Web Development
with Perl

Paul Fenwick
Jacinta Richardson
Kirrily Robert

Web Development with Perl
by Paul Fenwick, Jacinta Richardson, and Kirrily Robert

Copyright © 1999-2000 Netizen Pty Ltd

Copyright © 2000 Kirrily Robert

Copyright © 2001 Obsidian Consulting Group Pty Ltd

Copyright © 2001-2006 Perl Training Australia Pty Ltd

Copyright © 2001-2006 Paul Fenwick (pjf@perltraining.cam)
Copyright © 2001-2006 Jacinta Richardson (jarich@péeriing.com.au)

Open PublicationsLicense 1.0

This material may be distributed only subject to the terns@mnditions set forth in the Open Publication License, wt.lter (the latest
version is presently available at http://www.opencontegtopenpuby/).

Distribution of this work or derivative of this work in anyasidard (paper) book form is prohibited unless prior pernuass obtained from
the copyright holder.

This document includes content from 1861 Programming with Perraining notes originally created by Kirrily Robert and i¢en Pty Ltd.
All additional material written by Paul Fenwick and Jacif@hardson.

Copies of the Netizen training manuals can be found at Fttufceforge.net/projects/spork

This training manual is maintained by Perl Training Auséal

This is version 1.2 of Perl Training Australia’s "Web Devafoent with Perl" training manual.

Table of Contents

O o4 oo [T f o o TSRS 1
[} (oo L1 1o o o PSP PP 1
COUISE OULIINE .. eeeeee e e e e ar e e e e ean 1
ASSUMEA KNOWIBUGE ...t e e ettt e e et ettt e e e e e e e e s bt be e e e e bbbbeeeaaaaeesaannnn 1

WeDb StandardS...........coooo oo 1
WHAL WE HONT COVEN ...ttt e+ et et et et e e e aee e e e e e aaeaaaaaaaaaaaaas 1
Platform and version detallS...............ooiieeeeeeeieeeceee e 1
THE COUISE NMOTES. ...uuuttiiit i iee e ittt ee e et e e e e e e e et eeeeee et ee et et et et e eeeeeeesasbe e aeeeeeseeeaeeseeeeeeeeeeeeeeeeees 2

2. WAL IS CGI 2.ttt et te st e st e st a b et e ebeeseesae et e s beebeesbeeaeenbesbeanseseeteeseens 3
TR g E 3ol g F= T o =] SRR 3
(O 1Y o1 53T o [XCT=T A V=TT 3
HT TP DASICS ...ttt ettt ettt ettt ettt ettt e e s et eaeeeeeeeeeseaesssesssesssssrennres 3
RIS O T =To DT PRSPPI 4
HTTP METNOGAS.... ..ottt b msnansssesbessbassbarssarssnranns 4

1 [P OPPPPPPPPPPPPPPPR 5
HEAD ..ot eeeee ettt ae et tet—a——————————————————————————ttetttraraaararrrarara 5
O 1S IO 5
HT TP RESPONSES ... e 5
(O g T=T o) (=T ST 0 0] 1 T YA USRS 6

3. ClassiCal CGl ProgramMIMING.....c.coeueuerirreeeeesterteseesieeesesessesseseeseeeeessessessessesseseesessessessessesseneens 7
T TR ol F= T o (= SRR 7
GGl SBIUP et 7
ANAtOMY Of @ CGI PrOGIAM ... eeeeee ettt e e e et e e e e e s eeeee e e e e e e e e nnanes 7

Hello World

(= (o3 7=
The CGLPM MOAUIE ... e e eme e e e e e s eeeeaeas 8

F N g I= 1L (=] g F= 1)Y= 8

Functional versus object-oriented............. oo 9
LT To [T) TR TSP PUPT TP 9
start_html() and end_NEMI()oooooo e 10

(= {03 7= 11
Debugging CGl PrOgramMSouueiee ittt ieeec ettt st e e st e st e e s nn e e e e e e 11

Failing gracefully With CGLICaIP.......oouiiiiiieeeie et 11

= 1= =T 0 (0] £ S P 12

LAV 14 0T Lo LSRR 12

L (S (o Y= 12
ENVIronmMent ValUEScooooiiiiiie e 13
EXEICISES .ttt ettt ettt ettt e 13

ChaPLEN SUMIMAIYeiiiiiiiiieeiiieee et o s 1t e e setb e e e ettt e e e smbbe e e e eastbeeseseeeeantbeeeeennbreeaens 13

T Y I o Y 15
Tal (oo [UT1 1o] o DORTT PRSP PP PP 15
HTML generation With CGlcooiiiiiiiiiiicce ettt srn e e 15
The fOrM EIEBMEBNT ... e e e e e e as 16

GET VS POST ..ottt s e e e e e e s e e e e e e e e ene e s s 17

GET e e ————— 17

PO ST . e ——————————aaaaaaaaa 18

[T 100 (=1 (=10 0=] £ USSR 18
LU o) 2 18

Perl Training Australia (http://perltraining.com.au/) iii

... 18
L= PRSPPI 19
] (o1 [T 19
[[0 1o 1Y o 19

(L (o1 1= 19
e ToT Y170 (o 19
(] (01 1= 20
(O 1= o1 0T) 20
CheCKDOX GrOUPSeeeiiiiiiiei ittt ettt et smee e 20
L (o1 Y= 21
RAdIO DULLON GrOUPS......eteiiiiiiiieee it eeeme ettt ettt ee e et seanee e sebaeeeenee 22
Y] (o3 A 22
L (01 Y= 23
L S0 o] (o= To PP PPUPPP PRI 23
POST_MAX and DISABLE_UPLOADS ..., 24
Exercise
Pretty HTML......ooooi

Chapter summary

5. Accepting and processing form input
T TR el F= T o) (= SO ST PP
CGl PAIAMELEIS ...ttt mrmm s £ £ a4 eaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaanns

All PAramMEtEr NMAMIESccii ittt e e e st e e bbbttt e e e e e e s e e abbbbeeeeeeaneaeseneeeeeaeanan
Callingpar an() in context
Context issues
EXBICISE ..eeiiie ettt e ettt e e e e e sttt e e e e e e e e e e e s bbb eeeaaae s
Setting our own parameters
Deleting PArGMELEIS. ...ciiiiiieeiitieeie st ettt e e sttt e e st ee s s sbe e e ensseeee s anneeee s
Printing out parameters
ST o 1= SR
Debugging with theea . pmmodule’s offline mode
CGl.pm and input fields
ST o 1= PP
Building a GET string
(1L U o] (o= To PP
ST o 1= PP
Chapter summary

6. Security issues

TR (g E 3ol g T= T =] PSPPSR
The NEEA fOr SECUILY ...ttt e e e eeeee s
Potential security pitfalls
Coding for security
TAINE CNECKING....eeeeiiieei ittt ettt e e e e ettt e e e e seeeeeeee e e e e e s snnnnees
TUMNING ON TAINT ...t emee e e e e s
Untainting your datacccueeeeeee.
Environment variables $SENV{PATH}
Names can have odd characters
EXEICISES ...ttt ettt eae et
L0 o 1TSS (I] o] £] o PP PPUPPPRPPRP
Other forms might be submitted
L 1177= T Y PP UPPPPPRRPP
In this chapter.

Perl Training Australia (http://perltraining.com.au/)

7. Splitting HTML and codewith HTML:: TeMPIAte......ccooiienreeeerereeee e 43

TR (a3l g T= T L= PP UPRPOPPPR 43
What IS HTML: I TEMPIALE ...t 43
The template eXPlaiNedcoc.uiiiiiit e e s 44
(©70] 17T 01110] 1 L3P PTURPP PPN 44
Simple template fIeldsS ... 45
EXEICISES .ottt ettt e e et e e e st b e eenee e nrre e e aee 45
NoN-web accessible tEMPIALES.........c.oi.uei ettt et 45
Escaping in template fields..........oooiiiiii o 46
(@70] T [110] 0 F=1 £ J PRI 46
EXEICISES ettt ettt ettt e ettt e e e et e s erane e s nrae e e nee 47
[oToT o1 lo oo] 0 1)1 {1 o (= RSP RPTI 47
[T od 0T [T Vo I 1= SRR 48
Using Template ODJECESueiiiiiiiiii et e e e e saees 48
Binding SIMPIE PAramMeEterSueiiiiiiii i ettt ee e et sermeeee e e e 49
Binding COMPIEX PAraMELErS.........oiuiietiet ettt e e e e e et e e e e s eebeeeee s 50
EXBICISES ...ttt 50
Associating Other ODJECES.uuuiiiii e 50
Using CGLpmM wWith HTML:TEMPIALE.......ceeiiiiii ettt 51
EXEICISE ettt 52
Less templating with HTML::FIIINFOIM ... 52
EXEICISE .ottt e 54
Chapter SUMMEIYceiiiiiiieiee st ettt et e st e seme e e s e e e e s e e e e 54
8. DAtAVAlIABLION ...ttt bbb 55
T TR el s F=T o) (= SO ST PP 55
Client-Side ChECKING.......coiiiiiiie it 55
Simple server-side CheCKING.........cuuuiii e e 55
EXEICISE .ottt et s 56
GIOUP EXEICISE ..teieiutiiieeeitieee e sttt eemeaeaseeee s sttt ee e s abbaeeeeabbbeeee s aebeeeseannee s sneneeesannneeas 56
Data:: FOrMVAlIALON.ttt e e e b e e 56
Required and optional fIeldS..........oooiiiiiiieee e 56
EXBICISE ..ttt ettt e ettt e s arn s 57
[DT= 1T a0 [=T g ol =SSP 57
T (ol 1T SRR 57
(©0] 0151 17= 11 0| £ PP 58
Adding constraints to our Profileouem e cveeee e 59
Checking fOr ValIAItyccooiveiiiiiiet e reee e 59
EXBICISES ...ttt 59
More complex Validation............oouiii e 59
EXBICISES ...ttt 61
ErTOr MESSAGES. ..ot 61
USING OUF EFTOF MESSAGES .. ctteeeeeiuutrtteetammmmsims e eeeaeeesasasnnbnsseaaaaessaaansssseaaas 61
EXEICISES .ottt enn e e 63
Validation and taiNtiNg..........o.eeeieeiie et 63
EXBICISE ...ttt e et 63
Validation code and MOAUIES................eeeimmmmmeeeeeiie et 63
ChaPLer SUMIMATY ..ot ie oot ettt e e e e e ettt e e e e e e e s ennsbeeeeasasnbbbaeeeaaeaeaaane 64

Perl Training Australia (http://perltraining.com.au/) %

O, COOKIES AN SESSIONS.....eveeieeieieeeeeeereeeseeesseteesaeseesseseesassessarseesseesaasesssassesssseesaasessassessaseessareessanees 65

TR (a3l g T= T L= PP UPRPOPPPR 65
WHAL Bre COOKIES? ...ooiiiiiiiei ittt e ettt ettt s emee st e e e s enebe e e e et 65
WSS (o] ot e Yo (= TP PRSI 65
NAMING COOKIBS. ...ttt et et r e e s enb e e e st e e e anneeas 65
COOKIE SECUNTYvveeieeittiee ettt e ettt e e ettt e e e sttt e e e sa bt e e e e sbeeeessbeeee e s abbeeeessbbaeeeennes 66
Generating cookies With CGl:iCOOKIEuuuiiimrieeieeeeeiieiiieiir e e e e e essee e eeerreeeeeeeee s 66
FELCNING COOKIESoiiiiiiiiiie e e et 68
EXBICISES ...ttt et e s 69
TS E T (o] L PP 69
(O] 1Tt To] o I PP 70
SaVING SUBMISSIONS......ceiiiiiiiiie it e ettt 71
Clearing SESSION TALAocuveiieiiiiiiee e 71
DeEletiNg SESSIONSciiiiiiiiieeiee e e e et ettt e e e e e e bbbttt e ee e e e e e s aabbe e e e e s s aabnareeeeaaaeas 71
EXBICISES ..ttt ettt e e e e ettt e e e e e e e e e e e e e s bbb eeeaaaee s 72
1SS (o] = o1 PP UT TSP 72
TS (o] g IES] (o] = Vo = RO UTUTOTOTPPPR 73
HOUSEKEEPING. ...ttt ettt ettt te e e e e meeeee e e nees 73
Sessions and HTML:TEeMPIALEuueeiiii e e renneea s 74
o G (ol 1 = PP 74
CRAPLEE SUMIMABIY ...iiiiiiiiiii ittt s e+ttt et e e a4 e e e bbbt e et e e e e eameeee e e e e s e annbnbeeneaaaens 74
10. INtroduction tO HTML I M ASON ...ttt ettt sttt s s sne e 77
T TR el F=T o) (= SO ST PP OPPTPPPI 77
Problems With CIASSICAI CGlccciiiiiiiiiiiieiieee et ee e e e 77
WAL IS MASON? ...ttt e ettt e e e e e e e e s e eeee e e e s e nbbbneeeeaaaeesaan 77
Mason VS traditioN@l CGl.........uueiiiiiiiiie s st 78
A SAMPIE PAGE .ttt ettt e bttt e b et e e e e b e e s nenee s 78
COMPONENT BASICS.....eiiiiiitiiieeiitiiie et emmmm sttt e e sttt e e ettt e e e st e e e e snb e s seseeeesntbeeeeennbreeeens 78
EXBICISES ...ttt et e s 79
Calling COMPONENTS.eiiiiiiiiiei ittt e et e e e e sn b e e st ee e e snbbaeeeesnbbeeeeans 79
THhe COMPONENTFTOOL.ciiiiiiiiie it emreeene e e e e s 80
Filename CONVENTIONScooiiiiiiiei ittt ettt et e s ne et e e e enereas 80
EXBICISES ..ttt et 81
Chapter SUMMEIYoueeiiiiiiieiee et s ettt e et e e e sttt e e s st e e e seme e e s s e e e e s anneeeeeannes 81
11, COMPONENT AT GUIMENTS ..ottt sttt se e eb e s s e s et et b b e e r e s s e e e snennennes 83
TR a3l g T= T o =] PSPPSR 83
(o] g g o] {0 T ot T3S T o o PR RR 83
MUItiple FOrM VAIUBScoooie e 84
EXEICISES .. teeeiiie ettt ettt e e e e et e et a e e e s 84
The ARGS NASN......coiiiiiiii e e 84
EXEICISES ..ttt ettt ettt e e e e et e e e e e e e e 85
Calling components With argUMENTS............u coeeeeiiiiie e e e 85
EXBICISES ..ttt ettt e e e et e e e e e e et e e e e s abb e e eaaaa s 87
(O aF= o] (] a1 01 0 4 F= 1Y P PP UPOTPTPI 87
12, AULONANAEN S ...ttt b et bbbt e ae et b e b se e s be b ene e e ene et neas 89
T 1RSI el F=T o) (= TP PP 89
L070] 011051 1= o [on U T TP PPPPRPTP 89
The @XECULION CRAINciiiii ettt eeeae s 90
(o= 1| I 41 PPN 90
EXBICISES ..ttt 91

Perl Training Australia (http://perltraining.com.au/)

LY/ [=] 1 oo TR 91

EXBICISES ...ttt et 92
Default MEtNOAS.ccoiiiiei e 92
EXBICISE ..ttt ettt e ettt et 93
ALLTOULES ..ttt et e e b e e s e nneee s 93
Changing autohandler INNEIANCEiieeercere e 94
EXEICISES ..ttt et e s 95
Autohandlers for aCCeSS-CONLIOL..........co..uceeiiiei e 95
ChaPLEr SUMIMAIYeiiiiiiiiieeiiieee et s 1t e set e e e ettt e e e snbbe e e e esnb e e seseeeesntbeeeeennbbeeeens 95
13. CompPONENtSIN AEPEN ... e 97
TR a3l g F= T =] TP OPUPRPTOPPPR 97
SPECIAI GIODAIS ... e 97
Y PSS S P 97
] S SRTUSOSPRRS 97
%init and %6CIeaNUP DIOCKSuuiiiiii e 97
QOAOC DIOCKS ...t e e e 98
AvOoiding WOTK WIth Z00NCE........coiiiiiiiiieii it et 99
Componentinternals: other named DIOCKS........co i 100
[=E{o= o] [ao Jolo] 01 (=] | A TP PPRTPT O 100
EXICISES ...ttt 101
Escaping by default ... 101
Creating YOUI OWN ESCAPES ...ceiieeeiiiutieet e ettt ittt e e e e e e sanebbaeeeaeeaesaasnnnaeeeeans 101
MOAUIES VS COMPONENTS.ciiiiiiiiii it e eeeeee ettt e e e e e b bbb e e e e e e s snee e e e e e e s sneneeeee 102
Returning a value from a COMPONENTcooiiiiiiiiiiiie e 102
UsiNg COOKIES WIth IMBSONcoiiiiiiii ettt et e e
EXEICISE .ottt et
(O g T=T 01 (=T ST o 1] 0T YA PR
14. dhandler - The default NANAIESr ..o s
TR a3l g F= T =T PSPPI
FINAING dNANAIEIS ...
Arguments ... -
NOt FOUNd.....ccoviiiiiiiiiiiee e
Generating redirects........ccccceeeeenne.
An example dnandIer...........coouiiiiiiii e
EXBICISES ...ttt e e bbb e e eanees
RV (U= T o= Vo =2 T PO U T TTPRR
VirtUAl QUOLALIONSeeiiiiiieie sttt et e
EXEICISES ettt ettt et e sttt e e e seb e ernee e e nrr e
(0= To o1 o [o T= Lo =2 TP TUPPPPPRPPTT
EXBICISE ...t e ittt e e
DecliniNg the FEOUEST ..o e e e et e e e e e e s
CRAPLEE SUMIMAIY ...eeiiiiiii ittt e+ttt e e e e e e ettt et e e e e e e s samnmeeae e e eannbbeeaeeaeens
T O o a1 o [T
[N ThIS CRAPTET. .. et e e e e e e e e e e ne e e e aaeeeas
GENEIAI CACNE ... e
(07 Tod g LI o] 2RSS PR
EXEICISES ...ttt
10= Tod o1 g To o T= Vo [1S TS UUT TP
BUSY TOCKS ettt s ettt et e e e e e s meeee e e s e sannb e e e eeaeas
CRAPLEI SUMIMAIY ...eeiiiiiie ittt e ekttt e e e e e e ettt et e e e e e e s samnmeeae e e eannbbaeeeeaeens

Perl Training Australia (http://perltraining.com.au/) vii

viii

LB, I B S ettt ettt et e et e et e e e e e e eaee e s eesaaaeesa—aeea—eeearaeeaa—eeeareeeaaraeesareeeareesaareesanees 115

TR T3l g F= T =] TP PRI 115
QOFIILEN DIOCKS ... 115
Component calls With CONTENT..........cooiiiiiieeeee e 115
EXEICISE .ottt ettt ettt et e anb e e e eanees 115
Pre-filling fOrmMS iN IMASONcouuiiiiiii e 116
T (ol [T PRSP PRR 116
(O g T=T 01 (=T ST o 1] T YA PP 117
17. SESSION MANAGEMENToeiuiiitiriete ettt ettt b e et es et e e st et e et seebe st e besesbenesbeneneenes 119
TR T3l g F= T =T PSPPI 119
SESSIONS IN IMASON ..ottt ettt et eeee ettt e et e e e e s s e e aebee e e enbbeeeesnneeeas 119
AN EXAIMPIE....ciiiiii ettt e e e e s e e e e e e e e e e e e 119
EXEICISES ...ttt 120
SESSION CIEANUP ...ttt ettt e e e e s er e e e e e e e e e s sannbeeeeeaeas 121
CRAPLEE SUMIMAIY ...eeiiiiiie ittt e ekttt e e e e e e ettt et e e e e e e s smnmee e e e e eannbbeeeeeaeeas 121
18. FUMTNEr RESDUICEScuiieiiiettset sttt ettt sr st s et nr bttt ne bt nn s 123
ONIINE RESOUICTES ...ttt e ettt et e e e s e e bbb e e e nnn e e e eanne 123
BIOOKS ...ttt ettt e n e h e e e e e e e 123
SBE AISD ..ottt e e e e e e 123
A. Mason Setup and AdMINISEFALIONcoiiiiiieeee e 125
T e o 18 o1 1 (o] o RO PP P PP P PP PPPRP 125
L@ U1 o3 Q1= (1] o PP PP PR 125
Mason With the lid Offooiie e e 125
The MasSON INLEIPIELETeiiiiiiiie et eeeem e 125
The COMPONENEFOOL.eiiiiiiiiie ittt cmmeeeee et e ee e eneb e e e 126
The data dir€CIONY.......eiiiiiiii e e 126
MaASON WIBPPETSeeeeeeeeeeeeereeetenesese s e ese e see e senessse s ss s eessss s emm e eeennnerennnnnnnnrnnns 126
Using Mason through CGI SCIPLSeeieiiiiiieieeeeeiee et 128
Using Mason in stand-alone SCHPLScoiiiiuriirin e 129
1070 0 [od 013 o] o PR PP PP PPPRPPN 129

Perl Training Australia (http://perltraining.com.au/)

List of Figures

2-1. Atypical HTTP CONMNECLION. ...ttt e e e e e aeeaeaeeas
2-2. A typiCal CGl CONNECHION.ueiiiiieii ittt e e e e e s e rmmne e e e e e s e bnbbeeeaeeeaeanns

Perl Training Australia (http://perltraining.com.au/) iX

Perl Training Australia (http://perltraining.com.au/)

Chapter 1. Introduction

Introduction

Welcome to Perl Training Australia®/eb Development with Pariaining course. This is a two-day
course in which you will learn how to write dynamic, interigetweb applications using the Perl
programming language.

Course outline

« Day 1 -- Classical CGI programming
« Day 2 -- Introduction to HTML::Mason

Assumed knowledge

This course assumes that you already know HTML. You don’'trtedoe an HTML genius, but you
need to know what HTML tags look like, and how they work.

This course also assumes a comfortable understandinglpf/&eable types, operators and
functions, conditional constructs, subroutines, regedgressions, objects and references.

Web standards

While this is not a course on web standards, it is highly reb@mded that you follow them
whenever possible. The examples in this book will use orrasghe use of Cascading Style Sheets
(CSS) for presentation. CSS allows the HTML to representdyieal construction of a document,
and can make things significantly simpler in teaching, dgwelent, and production.

What we don'’t cover

This course does not cover any client-side programmingi&olgies, such as JavaScript. Some
parts of the course may make reference to JavaScript, ot desmbnstrate particular concepts, but
these are for illustrative purposes rather than being gdhtsocore course material.

Platform and version details

This module is taught using a Unix or Unix-like operatingteys. Most of what is covered will work
equally well on other operating systems. Your instructdlwform you throughout the course of
any areas which differ.

Perl Training Australia (http://perltraining.com.au/)

Chapter 1. Introduction

All of Perl Training Australia’s training courses use Perttte most recent major release of the Perl
language. At the time of writing the most recent stable e Perl is 5.8.8.

The course notes

These course notes contain material which will guide yoaubh the topics listed above, as well as
appendices containing other useful information.

The following typographic conventions are used in thesesiot
System commands appearthistypeface
Literal text which you should type in to the command line ot@dappears asonospaced font .

Keystrokes which you should type appear like tiEbiTER. Combinations of keys appear like this:
CTRL-D

Programlistings and other literal listings of what appears on the
screen appear in a nonospaced font like this.

Parts of commands or other literal text which should be gy your own specific values appear

like this

&
Notes and tips appear offset from the text like this.

@Notes which are marked "Advanced" are for those who are racing ahead or who already have
some knowledge of the topic at hand. The information contained in these notes is not essential
to your understanding of the topic, but may be of interest to those who want to extend their
knowledge.

EE Notes marked with "Readme" are pointers to more information which can be found in your
textbook or in online documentation such as manual pages or websites.

C Notes marked "Caution" contain details of unexpected behaviour or traps for the unwary.

2 Perl Training Australia (http://perltraining.com.au/)

Chapter 2. What is CGI?

In this chapter...

CGl is theCommon Gateway Interfaca standard for programs to interface with HTTP (web)
servers. CGl allows the HTTP server to run an executablerpro@r script in response to a user
request, and generate output on the fly. This allows web dpees to create dynamic and interactive
web pages.

CGl programs can be written in any language. Perl is a veryncomlanguage for CGl programming
as it is largely platform independent and the language®ifea make it very easy to write powerful
applications. However, CGI programs are also written ina®aJPython, PHP and shell.

It is important to remember that CGl is not a language infit€aGI is merely a type of program
which can be written in any language.

Clients and servers

A web server is a computer that manages and shares web badiedtigns accessible anytime from
any computer connected to the Internet. For example thangaserver we’ll be using today is a
web server for our purposes.

A client is a computer that’s utilising a web server. For eptanthe web browsers on your
machines, which you will be using to access content from i@ining server, are clients.

This course focuses in using Perl for server-side apptinatiWe can use Perl to generate dynamic
content, process forms, and other useful tasks.

HTTP basics

HTTP stands for HyperText Transfer Protocol, and is thequotused for transferring hypertext
documents such as HTML pages on the World Wide Web.

To understand how CGI works, you need some understandingvoT TP works.
Figure2-1. A typical HT TP connection

User Agent)
(browser) HTTP Server File System

Page Request (1)

File Lookup (2)

Headers (3)

Content (4)

I
I
I
I
:
I
File Contents l
I
I
I
I
I
I
I
I

y Server Machine .

Perl Training Australia (http://perltraining.com.au/) 3

Chapter 2. What is CGI?

A simple HTTP transaction, such as a request for a static Hplle, works as follows:

1. The user agent (a web browser) connects to the port uparhwie HTTP server is running
(usually port 80). The user agent sends a request sugtras ndex. ht mi . The user agent may
also send other headers.

2. The HTTP server receives the request and finds the reglfdstin its filesystem.

3. The HTTP server looks at the file content and generates HiE&-ers to tell the client what
kind of file it is sending, for example, text or image.

4. The HTTP server then sends the file contents to the cliehtkses the connection.

The CGI request

CGl requests different from HTTP requests as CGI scriptgeann any kind of output; text,
images, music; even from the same program! Thus for CGI pragrthe server cannot guess the
headers from looking at the file contents. Instead evergthinst be done by the CGI program.

Figure 2-2. A typical CGI connection

User Agent HTTP Server CGI Program File Syster
(browser)

Page Request (1)

Headers (4)
Content (5)

Headers (6)
Content (6)

T Executes Script (2) (3)

y Server Machine y

1. The user agent connects to the port upon which the HTTRisErvunning. It sends a page
request and any other headers.

2. The HTTP server receives the request and executes ther6Gam.

3. The CGI program runs, fetching from or writing to the filssm as required. It may also
contact other machines or services.

4. The program produces the appropriate HTTP headers add seem to the HTTP server.
5. The program produces the content and sends that to the B&rVEr.

6. The HTTP server forwards the headers and content to thetend closes the connection.

4 Perl Training Australia (http://perltraining.com.au/)

Chapter 2. What is CGI?

HTTP Methods

There are a number of ways of requesting data from a servemidst common of these are GET,
POST and HEAD, which we'll briefly describe below. We'll caM@ET and POST more during the
rest of the course.

The indented text in each of the below sections is quoted R&@ 2616 Fielding, et al.
(http://www.w3.org/Protocols/rfc2616/rfc2616-sedtnl).

GET

The GET method means retrieve whatever information (in dhefof an entity) is identified by the
Request-URI. If the Request-URI refers to a data-produpiegess, it is the produced data which shall be
returned as the entity in the response and not the sourceftthe process, unless that text happens to be
the output of the process.

Most web page requests are GET requests, such as:

http://ww. exanpl e. conf i ndex. ht m

GET requests can also submit data to CGI programs as follows:

http://ww. exanpl e. cont scri pt. cgi ?name=Ben&age=29

HEAD

The HEAD method is identical to GET except that the semast notreturn a message-body in the
response. The metainformation contained in the HTTP headeesponse to a HEAD requestouldbe
identical to the information sent in response to a GET retgdéss method can be used for obtaining
metainformation about the entity implied by the requeshuiitt transferring the entity-body itself.

HEAD requests are rarely sent by users, but are often semniaxes to check whether the content
has changed before fetching the full page.

POST

The POST method is used to request that the origin serveptiteeentity enclosed in the request as a
new subordinate of the resource identified by the Requestit/fRe Request-Line. POST is designed to
allow a uniform method to cover the following functions:

« Annotation of an existing resource
- Posting a message to a bulletin board, newsgroup, maibhgpli similar group of articles
- Providing data, such as the result of submitting a form, tata-thandling process

« Extending a database through an append operation.

Most form submissions on webpages use the POST method.

Perl Training Australia (http://perltraining.com.au/) 5

Chapter 2. What is CGI?

HTTP Responses

From the user point of view, if a request has been succes$iséyl receive their data, anything else
means the request wasn’t successful. On the protocol leged are a number of possible responses.
We mention a few of the common ones below:

« 200 --OK

« 301 -- Moved Permanently

« 302 -- (Found) Moved Temporarily
+ 404 -- Not Found

+ 500 -- Internal Server Error

Clients want to receive a response of 200, although 301 ap@®0okay (particularly if they include
a redirect to the new location). You'll probably see a lot 805esponses during the day, and we'll
play a little with the other responses tomorrow.

Chapter summary

« CGl stands for Common Gateway Interface.

« HTTP stands for Hypertext Transfer Protocol. This is theégeol used for transferring documents
and other files via the World Wide Web.

« HTTP clients (web browsers) send requests to HTTP (webgsgrwhich are answered with
HTTP responses.

« AllHTTP responses consist of headers and content.

6 Perl Training Australia (http://perltraining.com.au/)

Chapter 3. Classical CGI programming

In this chapter...

For a long time Perl was the de-facto language for developily applications. Th€Eommon
Gateway Interfaceor more commonly jusEGl, is a specification on how input can be accepted and
decoded from browsers.

Perl has aa@ module that is part of the standard distribution. It progidethe ability to parse CGI
arguments and data, as well as features for generating HTli.module is sometimes referred to
ascd . pmto provide a distinction between the module and the spetidita

This chapter covers how to write CGI programs in Perl.

CGl setup

The training server has been set up so that each user haswheiveb space underneath their home
directory. All files which will be accessible via the web skibbe placed in the directory namemgw.

The directoryuser nane/ waw/ 0N the training server maps to the URLt p: / / host nane/ user nane/
on the web.

On many servers CGI programs need to be placed in a spe@ataliy (traditionally named

cgi - bi n), have a particular extension (commonbyi), have particular permission bits set, or a
combination of any of these. These restrictions exist taenthat non-CGl programs do not get
executed by accident, and to ensure that CGI programs acetexk rather than just displaying their
source-code.

Your CGI directory appears under youtw directory The directoryiser nane/ ww/ cgi - bi n/ on the
training server maps to the URItt p: / / host name/ user nane/ cgi - bi n/ on the web.

If you were setting this up for yourself, you would need towgeghat:

« Your html and cgi-bin directories are world executable.
« All of your .html files are world readable.

« Your CGI scriptsareworld readable and executable.

Anatomy of a CGI program
CGl programs do not interact with the client directly, irsgtehey receive information from the
web-server and pass back appropriate responses.

CGI programs are expected to produce output to their stdraaput (STDOUT). This output
includes headers (such as content type and cookies), aadtilid document itself. The headers and
content are divided by a single blank line.

The following is an example of a simple CGI program that digplthe current time:

Perl Training Australia (http://perltraining.com.au/) 7

Chapter 3. Classical CGI programming

#!/usr/bin/perl -w
use strict;

print "Content-type: text/plain\n\n";
print scalar localtine

Hello World

The following HTML provides a simple "Hello World" message.

<htm >

<head>

<title>Hello World</title>
</ head>

<body>

<p>

Hello World

</ p>

</ body>

</htm >

As this document is entirely HTML, this page will remain gtalNo matter how often we visit it, it
will say the same thing. The only way of changing its contéhte change the file directly.

CGI programs, on the other hand, are able to generate daté wbpends on the time of day, a
random number and what you've put in ya@lropping cart

Exercises

1. Write at ext / pl ai n CGI program which prints out "Hello World!". Use thecal ti me example
above to get you started.

2. Change your Hello World program to instead generate HTAdLlshown above. Your header
should now sayont ent -t ype: text/htm\n\n.

3. Change your Hello World message to also prifi” are visitor number X'where Xisa
random number.

You can get a random integer between 0 and 10,000 witt(;r and(10_000)) .

The CGIl.pm module

Perl has a standard module caltesl . pmthat simplifies web development. While many new
technologies and techniques have been created eBncemwas developed, it can still be found in a
very large amount of deployed code, and can be used whefiimgtaore modern tools is not an
option.

There are still a huge number of traditional CGI programs éxést in production environments.
ca . pmprograms will work on practically any system with a Perl ailsttion, and this portability is
partially responsible for their popularity.

8 Perl Training Australia (http://perltraining.com.au/)

Chapter 3. Classical CGI programming

An alternative

CG . pmwas originally written by Lincoln Stein in 1995 and has beetivaly maintained since. It is
a monolith of code which does all of the following and more:

- Dealing with the CGl protocol, including parameter parsing
- Creating and managing cookies

« Generating HTML

« HTML and URI character escaping

With all of this functionality, much of which is not used byyptcal programga . pmcould be very
slow. Instead, it makes use of a number of very clever triokaake it fast. Still, some alternative
modules have been written to make it even faster.

One of the best known of these alternativesds. : si npl e. It provides an object oriented interface
like ca . pmis and is designed as a drop in replacementfor pm Ca : : Si npl e only handles the
CGl aspect of thea . pmmodule and does not include the HTML generation. Howevenitritten
to be more maintainable (the codeis i ct andwar ni ngs compliant) and faster.

Functional versus object-oriented

CGl provides both a functional and object-oriented integfal hroughout these notes we’ll be using
theobject-orientedstyle, as it reduces the chance of conflicts between CGI stibes, our own
subroutines, and those built-in to Perl. It is also the stytest commonly seen in examples in the
Ccd . pmdocumentation.

The following two examples demonstrate the difference betwthe styles. While the
object-oriented interface may seem a little more typingrat,fit can save a significant amount of
time in debugging later on.

Functional interface

use CA gw :standard);

print header(),
start_htnl (),

p("Hello Wrld"),
end_htm ();

Object oriented interface (recomended)

use C4d;
ny $cgi = CA - >new;

print $cgi->header(),
$cgi->start_htm (),
$cgi ->p("Hello World"),
$cgi ->end_html ();

In these cases we're also showing off CGI's HTML generatioititées.

Perl Training Australia (http://perltraining.com.au/) 9

Chapter 3. Classical CGI programming

header()

The first piece of data we must send to the client is the he@tlex.contains information regarding
what kind of data is to follow (image, text, html, encryptedid any browser directives such as
cookie information, language, expiration date and cachiggestions.

To print a standard header we can just write:

print $cgi->header();

This will generate something like:

Content - Type: text/htm; charset=ISO 8859-1

which is usually all that is required for CGI programs. Header function can take a number of
arguments including non-standard ones which we might veatitrow in:

print $query->header (
-type=>"text/htm’,
- expi res=>" +3d’,
- cooki e=>%cooki e,

)

The expires parameter tells the client to cache the pag# seslinot to re-invoke the program the
next time the user requests that data. This is not a guartirdethe data will not be requested as
both the client and the user are able to ignore this inswocti

start_html() and end_html()

10

Almost every invocation of your CGI program will result in aed to print out the start HTML tag, a
header block, and your body tags. Fortunatety, pms st art _ht i method creates the top of your
page, and can be used to reliably create much of the optiofeethiation which controls your page’s
appearance and behaviour.

A simple header should include the page’s title, for example

print $cgi->start_htni(
-title => "Hello Worl d",
)

which produces:

<?xm version="1.0" encodi ng="i so-8859-1"?>
<! DOCTYPE ht m
PUBLIC "-//WBC// DTD XHTML 1.0 Transitional //EN'
"http://ww. w3. org/ TR/ xht m 1/ DTD/ xht M 1-transi ti onal . dt d">
<htm xm ns="http://ww.w3. org/ 1999/ xhtm " | ang="en-US" xnl : | ang="en- US">
<head><title>Hello World</title>
</ head><body>

We can pass in other parameters to define the page authomdatbase, frame targets, meta
information, style-sheets, background colour and linkesadiperldoc CGI for more information.

On the other hand, thend_ht i method finishes the page. This involves closing the bodyatiad,
the html tag:

print $cgi->end_htm ();

</ body></htm >

Perl Training Australia (http://perltraining.com.au/)

Chapter 3. Classical CGI programming

If you don’t want to generate XHTML, you can use CG 's - no_xht ni pragma, like this:

use Cd gw(-no_xhtnm);

You can also pass a - dt d and many other parameters to start _ht i . For more information, read
perl doc Cd . pmunder the section CREATING THE HTML DOCUMENT HEADER.

Exercise

1. Alter your previous hello world program to use CGléader, start _htmi andend_ht m
methods.

Debugging CGI programs

When writing CGI programs, there are many problems which affgct their execution. Since these
will not always be easily understood by examining the welwiser output, there are other ways to
determine what’s going wrong.

If there seems to be a problem first try the following steps:

1. Check that your program compiles by usjig! -c
2. Check the permissions on your cgi program. If it is not @akecutable then it won't work.

3. Run your program on the command line. If your program wiaitéinput, that’s your opportunity
to pass in parameters. For the moment, p€EERL -d.

4. If your program runs fine on the command line but still doesautput to the browser, make
sure that you have not forgotten to print the header befor@trer output.

5. Check the HTML source that you're printing. Make sure g@it've closed any tables you've
opened and not made any obvious HTML errors.

6. Check the web server’s log files. The location of these fram system to system. On our
system they're invar/ | og/ apache/ .

Failing gracefully with CGl::Carp

You can read all about ca : : car p by reading perldoc CGl::Carp . It's also covered briefly on

page 878 of the Camel book (but not in 2nd Ed.).

CGl scripts often leave warning messages in the error lotsowi time stamps or script name. This
can make it much harder to identify which program caused titeg,eand how long ago it occurred.
Fortunately we can use Perts : : car p module to add both of these pieces of information:

use CGE :: Carp;

Perl Training Australia (http://perltraining.com.au/) 11

Chapter 3. Classical CGI programming

We can also make our errors go to a separate log, by usingteut subroutine. This needs to be
done inside @eG N block in order to catch compiler errors as well as ones whattuoat the
interpretation stage.

BEG N {
use CA::Carp gw carpout);
open(ny $log, ">>", "cgi-logs/mycgi-Ilog")
or die("Unable to open nycgi-log: $'\n");
car pout ($l og) ;
}

You will need to ensure that the user id that your programmging under has the permissions to
access the directory and file that you provide.

Fatal errors

One of the most common usesad : : Car p is to cause any fatal errors to have their error messages
and diagnostic information output directly to the browser:

use CA::Carp gwfatal sToBrowser);

die ' Some disaster!’; # This will be printed to the browser

@ Cd : : carp is an excellent tool to use during debugging. However, it is not a good idea to leave it
enabled with f at al sToBrowser in production code. There are two reasons for this. The first is that
errors should be handled properly by a default error page or something equivalent. The second,
and more important, is that f at al sToBrowser provides a lot of information about your script’'s
internals. This information is not going to help your average user to know what they did wrong,
but it may help malicious users discover ways they can exploit your code.

Warnings

Just as at al sToBrowser allows us to see Perl’s fatal errors, we can alsoasse: Car p to show us
Perl's warnings. These are printed in our HTML source as HTddlmments so that they don’t
interfere with our normal output.

use CA:: Carp gw warni ngsToBr owser) ;
war ni ngsToBr owser (1) ;

warn ' Sonme war ni ng’; # This will be printed in HTM. conments

As these are only useful after we have printed out our CGI éesadls : : car p will buffer our
warnings until after we have calledr ni ngsToBr owser (1) , which tellsca : : car p that it is safe to
now print warnings in HTML comments. We can also turn bufigrback on if we are generating
HTML structures which don'’t allow comments internaligr ni ngsToBr owser (0)

We can combine bothat al sToBrowser andwar ni ngsToBr owser to turn them both on:

use CA::Carp gwMm fatal sToBrowser warni ngsToBrowser);

12 Perl Training Australia (http://perltraining.com.au/)

Chapter 3. Classical CGI programming

Exercises

1. Edit yourhel | 0. cgi program so that it dies with an error before the CGI headerpanted.
What does the browser display?

2. Addf at al sToBrowser to your program and make sure that you now receive that eawr n
printed to the browser.

3. Usewar n to print a warning during your program’s execution. Turnsanni ngsToBr owser and
ensure that it appears in your program’s comments.

Environment values

The CGl specification makes available a large amount of imaditinformation including what type

of browser is accessing our server, and its IP address, dasvelr server’s name and which virtual
host is being accessed. This information is placed intorenwent variables which we can access

throughca . pmis methods.

user_agent()

ReturnsHTTP_USER_AGENT. If provided with an argument, it will use that for patterntetang
allowing you to writeuser _agent (" net scape") to determine whether the user agent string
includes the wordnet scape”.

remote_host()

The remote host name or IP address.

server_name()

The name of the server the program is running on. Very usdfiehwunning a testing site and a
production site, but keeping identical copies of code.

virtual_host()

Name of host to which the browser attempted to connect, tifi@ithosts are in use.

Exercises

1. Edit your Hello World program to print out the user agerd gnaddress of the visitor.

Try calling your program with different browsers.

Chapter summary

+ CGI programs produce output to their STDOUT, this must idelboth the headers and the
content.

« Theca . pmmodule can be used to produce both the headers and the content

Perl Training Australia (http://perltraining.com.au/) 13

Chapter 3. Classical CGI programming

- Theca . pmmodule can be used in both a functional and object orientguda.

14 Perl Training Australia (http://perltraining.com.au/)

Chapter 4. HTML Forms

Introduction

Forms are a common and often integral part of any web apitdh simple terms, a form is an
interface whereby users can enter or modify data, and tHemisthat data to a server for processing.

HTML generation with CGl

In general, it is better to separate HTML and code into seépditas. This allows HTML designers to
alter the page structure without having all this ugly codeig¢éhe way! We'll talk about how to use
templating systems to achieve this in a later chapter.

The examples in the previous chapter work equally well®r pmandca : : Si npl e and the two
modules are interchangeable. Howewer, pmalso supports basic HTML generation.

cG . pmhas methods for all the standard HTML tags. So, for exampileifvanted to print out an
anchor:

Further infornation about Perl Training Australia.

we'd type:

use CGE;
ny $cgi = CA ->new();

print $cgi->a(
{-href => "http://ww.perltraining.comaul/"},
"Further information about Perl Training Australia."

)i
We can also create start tags, and end tags directly, in tydmnerate data to go between them:

use CG3;
ny $cgi = CA ->new();

print $cgi->start_ul;
foreach ny $name (qw Jacob Jereny Jacinta Jenni Jack/)

{
print $cgi->li($nane);
}

print $cgi->end_ul;

This HTML generation is most useful when we're creating falements, particularly when a lot of
our data is coming from a file or database. This is becauslwsls to use our existing data
structures to easily generate the HTML we need.

Perl Training Australia (http://perltraining.com.au/) 15

Chapter 4. HTML Forms

CG . pmmethods typically take two arguments; a hash reference of options and the data. In the
cases where you are not passing any data in (such as start_htm), you can pass in key/value
pairs instead. So the following are equivalent:

print $cgi->start_htm ({
-title => "Hello World"
9]

print $cgi->start_htmn (

-title => "Hello World"
)

In the cases where you are happy to use the default options, you can leave off the first argument
and just provide your data:

print $cgi->li($nane);

It is a mistake to provide both options and data, without including the options in a hash
reference:

Won't work as desired:
print $cgi->li(-class => $class, $nane);

Shoul d be:
print $cgi->li({ -class => $class }, $nane);

Some methods also allow you to use short cuts, so the below example is also equivalent to the
previous start_htni examples:

print $cgi->start_htm ("Hello World");

The form element

16

Thef or melement is a block level element, which means that the brnowilepresent it on a new
line, as it does with headings and paragraphs. It is also itan, which means that other elements
can appear inside the form.

It's attributes include:

method
How the form should be submitted to the web server. ThesadecGET and POST, which
we’'ll cover in a moment.

action
A relative or absolute URL for the CGI program which the fomformation should be
submitted to.

enctype

The form’s encoding type. This should bgpl i cat i on/ x- waw- f or m ur | encode for standard
forms andml ti part/ f or m dat a for forms with file-uploads.

Creating a form using CGl.pm is easy.

Perl Training Australia (http://perltraining.com.au/)

Chapter 4. HTML Forms

print $cgi->start_forn({
-action => "nyscript.cgi",
-method => "POST",

|

print forminternals.

print $cgi->end_forn();

If we don't specify our method, then CGIl.pm will assume weitded POST. Likewise if we don'’t
specify an action, it will assume we intend for the submiss@come back to the current CGI script.
CGl provides an encoding type afopl i cati on/ x- wwwf or m ur | encode) by default, so we can
leave that off too. Assuming that our program is caliedri pt . cgi , we can reduce the above to:

print $cgi->start_forn();
print forminternals.
print $cgi->end_forn();
Multi-part forms (which allow us to upload files) use a difat method.
print $cgi->start_multipart_forn({
-action => "nyscript.cgi",
-method => "POST",
-enctype => "nultipart/formdata",

1)

print forminternals.

print $cgi->end_forn();

GET vs POST

There are two commonly used methods for form submissions& heethods are called GET and
POST, representing the underlying action taken in the HTiDopol. It is worth briefly examining
the difference between these two methods for form submmissand the advantages and
disadvantages of each.

GET

A 'GET’ form submission operates by taking the form data ancoeling it into the URL. As an
example, let's pretend that our form asks for the user'sdat® colour and food:

<f orm net hod="get" action="http://exanple.com favourites.htm ">

<p>
What is your favourite col our?
<i nput type="text" name="col our" />

What is your favourite food?
<i nput type="text" nanme="food" />

<i nput type="submt" />

</ p>

</form

If the user enters the colour 'red’ and the food 'apples’s thill generate a request to
http://exanpl e. com favourites. htm ?col our =r ed&f ood=appl es.

Perl Training Australia (http://perltraining.com.au/) 17

Chapter 4. HTML Forms

The primary advantage of GET and URL encoding is that it tesnlURLSs that can be easily
bookmarked. It's also easy for humans to modify the URL, Wldan make ad-hoc testing simpler.
GET encoding should never be used for forms involving pasdsy@s the resulting URL including
the password may appear in the browser history, cache lndsever logs.

GET requests are poorly suited for large forms, and cannasbd for file uploads.

POST

A’POST’ form submission operates by composing the form @atathe body of the request
submitted to the server. The data can be of any length, anddiéads and other binary objects can
be handled cleanly. POST operations do not alter the URL ynaay.

POST operations do not result in pages that are easy to baokkima at the same time they do not
have problems with passwords ending up in logs and histay.fil

Form elements

There are a large number of possible form elements we caieskk cover some of these here
briefly.

Submit
The submit element creates a button which, when presseajsuihe form to the server.

<input type="submt" nanme="personal _data" val ue="Fini shed!" />

We can create these with CGl.pm with:

print $cgi->submit({
-nanme => "personal _data",
-value => "Finished!",

1)

Exercises

With this and the later exercises you will develop a form viahtiskes a number of different kinds of
inputs.

1. Write a program which creates a form which will POST theteahback to itself.

2. CGl has a method callasinp which prints out any values passed into a script through a @ET
POST submission. We can call this as follows:

print $cgi->Dunp();
Usebnunp to print the values passed into your form.

3. Test that your program works. We'll be adding form elerseatmake use afunp as we work
through this chapter.

18 Perl Training Australia (http://perltraining.com.au/)

Chapter 4. HTML Forms

4. Add a submit button to your form. Traditionally these aqupet the end of the form.

Run your program and see how it goes.

Text
The text input field.

<input type="text" name="enuil_address" val ue="bob@xanpl e. cont' />

We can create this with CGl.pm by either of the following:

print $cgi->textfield({
-nane => 'email _address’,
-val ue => ' bob@xanpl e. con ,

1)

print $cgi->i nput ({
-type => "text’,
-nane => 'email _address’,
-val ue => ' bob@xanpl e. coni ,

1)

Exercises

Add a text field to your form. Type something into the box anldmit your form.

Hidden

Hidden fields allow us to pass data around without havinggpldy it to the user. Using hidden
doesn’t mean that the usesinnotsee the data -- as it's there in the source -- but it meanshbat t
user doesn’t have to worry about it.

Hidden fields should always have a value defined.

<i nput type="hi dden" nanme="stage" val ue="3" />

We can create this with CGl.pm by either of the following:

print $cgi->hidden({
-name => "stage",
-val ue => 3,

i

print $cgi->i nput ({
-type => "hidden",
-name => "stage",
-val ue => 3,

1)

Exercise

Add a hidden field to your form. Give it a value and submit yamfi. What happens?

Perl Training Australia (http://perltraining.com.au/) 19

Chapter 4. HTML Forms

Password

Password fields allow the user to enter a password withoubfean-lookers learning it. Values
entered into a password field are obscured with asterislactes {).

<i nput type="password" name="user_password" />

We can create this with CGl.pm by either of the following:

print $cgi->password_field({
-name => "user_password"

1)

print $cgi->i nput ({
-type => "password",
-nane => "user_password",

1)

C Just because the information is obscured on the screen doesn’t mean that it is secure. Under a
regular HTTP request, all fields (including password fields) are passed to the server in plain text.
This allows anyone with a packet-sniffer to read what data was entered.

Likewise, setting a password value when generating HTML will be visible to anyone who looks at
the HTML source. If keeping passwords secure is important, make sure you are using
secure-HTTP (HTTPS).

Exercise

Add a password field to your form. Enter something into the &ad submit the form.

Checkbox

Checkboxes allow users to set a value to on or off. Used sithglse might be used to opt-into a
mailing list, or request that an email copy of an invoice ba.sié the checkbox should appear as
"on", we set the "checked" parameter:

<i nput type="checkbox" name="send_email" val ue="yes" checked="checked" />
Enmi|l copy of itinerary?

We can create this with CGIl.pm with:

print $cgi - >checkbox({

- name => "send_email ",

-val ue => "yes",

-checked => 1,

- | abel => 'Email copy of itinerary?

1)

If the user selects the checkbox, it will appear in the formapeeters with the specified name and
value. If the checkbox is not selected, then there will be m@meter of that name, rather than the
name and a false value.

20 Perl Training Australia (http://perltraining.com.au/)

Chapter 4. HTML Forms

Checkbox groups

Another common use of checkboxes is to create a group of thbese receive the same input
name, but have different values. We can tell which (if anyyiga the user selected, by looking at the
list of values given to us under that input name.

<i nput type="checkbox" name="interests" value="bow" />Bowing

<i nput type="checkbox" name="interests" value="fish" [>Fishing

<i nput type="checkbox" name="interests" value="clinmb" />Cinbing

<i nput type="checkbox" nane="interests" val ue="ski" />Skiing

<i nput type="checkbox" name="interests" value="dive" />Diving

Rather than create these individually we can use CGl.pm fbalbat once:

print $cgi->checkbox_group({

- name => "interests",
-val ues => [gWm bow fish clinb ski dive)],
-1 abel s = {
bow => "Bow ing",
fish => "Fishing",
clinmb => "dinbing",
ski => "Skiing",
dive => "Diving",
}
-defaul t =[],

-linebreak => 1,

1)

Let’s look at that a little. Specifying a hash of labels letsstell CGl.pm what text to put beside each
checkbox, specifying an array of values, tells CGIl.pm thdeoim which the checkboxes should be
placed. We can leave the labels hash empty if the values aetslare the same.

Note that our values, defaults and labels are all passedoayarous references. If we have access to
arrays and hashes with this information in it (perhaps beeae’ve pulled it from a file or
database), we can pass in references to those instead:

my % abels = (

bow => "Bow ing",

fish => "Fishing",

climb => "Cinbing",

ski => "Skiing",

dive => "Diving",
)
my @al ues = gwm bow fish clinb ski dive);
my @efaults = gw);

print $cgi - >checkbox_group({
- nane => "interests",

-val ues => \ @al ues,
-l abel s => \ % abel s,
-defaul t => \ @efaults,

-linebreak => 1,

1)

Thel i nebr eak option, if true, puts abr /> tag after each checkbox.

Perl Training Australia (http://perltraining.com.au/) 21

Chapter 4. HTML Forms

22

Exercises

1. Add a checkbox field to your form. Try submitting your fornitlnit checked and unchecked,
what is the result?

2. Add a group of checkboxes to your form. Try submitting yfmrm with none, some and all of
the boxes checked. What is the result?

Radio button groups

Radio buttons allow users to set one value in a group to onfoAlthough it is possible in HTML to
have a single radio button, the correct equivalent is a stdmge checkbox.

<i nput type="radi 0" name="age_group" val ue="10" />Under 10

<i nput type="radi 0" name="age_group" val ue="20" />11 to 20

<i nput type="radi 0" name="age_group" val ue="30" />21 to 30

<input type="radi 0" name="age_group" val ue="40" />31 to 40

<input type="radi 0" name="age_group" val ue="50" />40 and over

Logically, a group of radio buttons is equivalent to a singd&ie select list (such as that generated in
a pop-up list). It is often a good idea to use radio buttonyéoy small sets of options (such as
binary decisions) and when seeing all of the options is irgudr With a larger set of options, using

a pop-up list will improve the usability of your website.

Creating a radio group is almost identical to creating a kbex group:

print $cgi->radi o_group(

- nane => "age_group",

-val ues => [10, 20, 30, 40, 50],
-defaul t => 0,

-linebreak => 1,

-1 abel s => {

10 => "Under 10",
20 => "11 to 20",
30 => "21 to 30",
40 => "31 to 40",
50 => "40 and over",

)

Setting the default value to a non-existent value ensuasihvalue will be originally selected.

Select

There are two types of select lists in HTML. One is often nefdito as a "pop-up list" as their
implementation typically has the list options pop-up over browser window when you wish to
scroll through them. These allow you to select one value thatds the value which remains visible.

The second is often referred to as a "scrolling list" or a 'tiFigdt". These may show a number of
entries at once, and you can can select multiple values itigsire.

The type of select list is defined by two factors. The firstés 2 parameter (how many values to
show at once) and theil ti pl e attribute.

Perl Training Australia (http://perltraining.com.au/)

Chapter 4. HTML Forms

<l-- Sinple pop-up list -->
<sel ect name="conputers">

<option val ue="1">1</ opti on>
<option sel ected="sel ected" val ue="2">2</opti on>
<option val ue="3">3</opti on>
</ sel ect >

<l-- Scrolling, select multiple list -->

<sel ect name="operating_systens" size="3" nultiple="nultiple">
<option val ue="w n32">M crosoft W ndows (XP, 2000, 98) </option>

<option val ue="linux">Li nux (RedHat, Debian, Ubuntu etc)</option>
<option val ue="nmac"> Apple (0S89, OSX) </ opti on>
</ sel ect>

We can create a pop-up menu with CGl.pm with:

print $cgi->popup_nenu({
- name => "conputers",
-values =>[1, 2, 3],
-default => 2,
-l abels => {},

1
We can create a scrolling list with:

print $cgi->scrolling_list({

- name => "operating_systens",

-val ues => [gw(wi n32 linux unix mac)],

-default =>117,

-l abel s => \ % abel s,

-multiple => 1,

-size =1, # Viewport |ength
I N
Exercises

1. Create a popup menu for your form.
2. Create a scrolling menu for your form.

3. Experiment with passing both anonymous references,efacences to existing variables.

File upload

The file upload field allows us to upload files from the user.SEhmay be files of any type (text,
image, mp3...). In order for these to be useful, we must usksGE&art _mul ti part _f or mor
otherwise specify that we're using a different encodingetyp

The file upload box automatically includeseowse button on most web browsers. We can generate
a file upload box with:

print $cgi->start_nmultipart_forn();

print $cgi->filefield({

- nane => "file_upload",
-defaul t => "Pl ease enter a file nanme",
-si ze => 50,

1)

Perl Training Australia (http://perltraining.com.au/) 23

Chapter 4. HTML Forms

The size specifies the boxes width, and the maxlength thermamwinumber of characters allowed in
the filename and path. The default value may appear in thedibbbiox, but is ignored by most
browsers. It is safe to leave off all values excepting thel fielme.

POST_MAX and DISABLE_UPLOADS

CGI has two package variables which control the maximumaiZE0OSTings and whether or not
uploads can be used. To set a maximum size for your post&get: POST_MaX, this should be set to
a reasonable value such as 1 megabyte.

To disable file uploads completely, s&id : : DI SABLE_UPLOADS to a true value.

use CG;
$Cd : : POST_MAX = 1024 * 1024, # 1 MB posts
$Cd : : DI SABLE_UPLOADS = 1; # No upl oads

ny $cgi = CA ->new();

Exercise

Add a file upload box to your program.

Pretty HTML

24

CGl.pm generates very dense HTML by default. That is, it ddesld any extra newlines or spaces
between grouped elements (for example for checkbox and gadups). This can make reading the
source code very difficult, and it also may mess up the neatdtimg of your templates. For
example, the following is how a checkbox group is formatted:

<i nput type="checkbox" name="check" val ue="a" />a
 <input
type="checkbox" name="check" val ue="b" />b
 <input type="checkbox"

name="check" val ue="c" />c
 <input type="checkbox" nane="check"
val ue="d" />d

We can make this a lot nicer, by adding our own newlines. @gli CGIl.pm method in list context,
returns the generated elements in a list. We can then jarighiwith newlines and any other
spacing desired:

my @oxes = ('a .. 'd);

ny $check = join("\n", $cgi->checkbox_group(
- name => "check",
-val ues => \ @oxes

-linebreak => 1

)i

This will produce:

<i nput type="checkbox" name="check" val ue="a" />a

<i nput type="checkbox" name="check" val ue="b" />b

<i nput type="checkbox" nane="check" val ue="c" />c

<i nput type="checkbox" nane="check" val ue="d" />d

Perl Training Australia (http://perltraining.com.au/)

Chapter 4. HTML Forms

The above does not work for select lists, which are alwaysgmed as a single scalar. Fortunately
they already include newlines.

Chapter summary

« CG . pmcan be used to generate all sorts of HTML tags. This is mostbLfee form elements.

« GET form submissions encode their data in the request sBO$ T submissions encode their
data in the request body.

Perl Training Australia (http://perltraining.com.au/) 25

Chapter 4. HTML Forms

26 Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Accepting and processing form
iInput

In this chapter...

CGI programs are often used to accept and process data fravit Harms. In this section, we show
how we can use thea . pmmodule to parse form data.

CGI| Parameters

One of the biggest advantages of usingt¢ie pmmodule is the easy access it provides to all of the
CGl session information. The most useful of these are theeggbassed in from the user, but other
information such as the URL, hostname, path details andrezfean also prove helpful.

The parameters from an HTML form are usually encoded a "ncbded” format:

name=Paul &onpany=Per| %20Tr ai ni ng¥20Austral i a

In this format input is encoded asy=val ue pairs, with eaclkey=val ue combination separated with
an ampersand. Spaces, most punctuation, and non-prictedniacters are replaced by a percentage
followed by their ASCII value in hexadecimal.

For a GET operation, this encoded string appears as pare . The web-server extracts this
portion of the URL and places it into thiERY_STRI NG environment variable.

http://exanpl e. com cgi - bi n/ test. cgi ?nane=Paul &onpany=Per | %20Tr ai ni ng¥20Austral i a

For a POST operation these are provided as part of the mesedgeand are fed to the program via
STDI N.

As you can imagine, decoding this by hand is hard work. Itsnelvarder than you may think, since
there are alternative encoding schemes that may be used|tanthtive character sets to consider.

Fortunately, we should never need to decode a form submissiselves, as we can us& . pms
par an() method to fetch them:

#!/usr/bin/perl -w

Prints a "Hello" to the name given or to "Stranger"
use strict;

use CQ3 ;

ny $cgi = CA ->new();
ny $nane = $cgi->paran{’'nane’) || "Stranger";
print $cgi->header(),

$cgi->start_htm (" Hello!"),

$cgi ->p("Hell o, $nane!"),

$cgi ->end_html ();

Using CGl'spar an() method (or an equally well-respected moduleglisaysa better idea than
parsing the parameter string ourselves.

27
Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Accepting and processing form input

28

All parameter names
We can get a list of all the parameters passed in by caflingmwithout any arguments:

ny @l | _paranmeters = $cgi->paran();

Calling paran() in context

Certain types of form input fields define multiple values & fame name. For example a check box
group may have more than one check box checked. A scrolbhgiight have more than one
element selected. To access these wepaskmfor an array.

put all the check box values that were checked into @hecked.
nmy @hecked = $cgi - >paran(’ group_nane’);

Of course if we only expect one value we can say:
ny $checked = $cgi->paran(’send_enuil’);

When we calbar amin a scalar context, we will always get a scalar result. If rerameter was
actually given a number of values, we’ll just get the first ohghem; nothing will tell us that there
was more than one.

Context issues

When called in a list contengar amwill return a list of values. If there was no value set for that
parameter, it will return an empty list. This can be a probieyou do the following:

check_i nput ($cgi - >paran("nanme"), $cgi - >paran("phone"));
later
sub check_i nput {
ny ($nane, $phone) = @;
}

This will work most of the timghowever if there were multiple values fiaame thengphone will be
set to the wrong value. Perhaps worse, if there is no valuth&rane parameter, thesnane will be
set to the value for thghone parameter!

The correct solution is to explicitly specify the context want frompar an{() :
ny $nane = $cgi->paran("nane");
ny $phone = $cgi - >par an(" phone");

check_i nput ($nanme, $phone);

or
check_i nput (scal ar ($cgi - >param("nane")), scal ar($cgi - >par am(" phone")));

Exercise

1. Usepar amto print out the values of your text and hidden fields in younfg@rogram.

Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Accepting and processing form input

2. Usingpar amin list context print out the values of your select lists.

Setting our own parameters

par amcan also be used to set or override parameter values fontbedtion of your program. This
can be useful to provide missing information (perhaps frasatabase) before using tbel object
to populate values in a template.

Add an age to the CA object:
$cgi - >paran(-nane => "age",
-val ue => 15,

)

Add colours to the CA object:
$cgi - >paran{ - nane => "col ours",
-values => ['orange’, 'black’, 'purple’],
)i
We can also append values to a parameter for the life of thgranm
Add these nunbers to any already sel ected
$cgi - >append(- nane => "nunber",

-values =>[2 .. 5 7 .. 10],
)

Deleting parameters

Sometimes we want to use a parameter value and then delemittie parameter list. For example
if we are printing out submitted data to a file for later refere, we may wish to avoid including any
passwords. Rather than putting in checks for each excludlel] e can instead just delete the
values.

Del ete the passwords now that we no |onger need it
$cgi - >del et e("password", "repeat_password");

To delete all of the parameters (perhaps as part of a forn) i@seecan useel ete_al | .

Delete all the paraneters
$cgi ->del ete_al | ();

Printing out parameters

When debugging, it often helps to see all the values pasdedrinthe previous script. Unfortunately
Dat a: : Dunper does not provide a friendly HTML format, and sometimes ast¢eshe error log may
not be available. Fortunately we can wsep to print these values for us in HTML.

Print all the user supplied val ues
$cgi - >Dunp;

This creates HTML similar to the following:

Perl Training Australia (http://perltraining.com.au/) 29

Chapter 5. Accepting and processing form input

30

namel

valuel
value2
<l ul >
<l'i >name2

valuel</Ili>
<l ul >
<l ul >

The same behaviour can be achieved by interpolatingdgie object in a string:

print "These are ny val ues: $cgi";

Exercises

1. Change your earlier form program to also print "BINGO"dfif or more fields have been given
values and submitted to your program. Try to distinguistvieenh empty but present fields (such
as the text field with no data) and fields with actual data.

2. Print a funny message if any field has been submitted withipteuvalues (for example your
scrolling list or checkbox group).

Debugging with the ca . pmmodule’s offline mode

CGl.pm allows us to run our CGl scripts in debug mode. Thisvedl us to specify parameters on the
command line, rather than via a browser. To do this, we spdeibug mode in our use line:

use CA gw -debug);
ny $cgi = CA ->new();

Once debug mode is turned on, we will be prompted for inpulh éiate we run the program on the
command line:

% ./ hel |l o_nane. pl
(offline node: enter nane=val ue pairs on standard input; press "D or "Z
when done)

This allows you to enter parameters in the forare=val ue for testing and debugging purposes.
CTRL-D on Unix orCTRL-Z on Windows (the end-of-file character) to indicate that ym a
finished:

(offline node: enter nane=val ue pairs on standard input; press "D or "Z
when done)

nanme=fred

age=40

"D

C CGIl.pm assumes that the val ue pairs that you pass it are url-encoded. We’re just about to cover
how you can url-encode a variable.

Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Accepting and processing form input

CGl.pm and input fields

A nice but sometimes surprising behaviour of the CGl.pmscigi$o assign parameters frqar am

to your input fields. This means that if your script submitggelf and some of the validation fails
you can reprint the passed in data with no further effort. i@ndther hand you may not get the value
you expected to come out in your field.

To solve this problem, if you want the value you supphatwaysbe the initial value in that input
then use the override option:

$cgi - >hi dden({
- hane => "student_id",
-val ue => 36887,
-override => 1,

s

Exercises

These exercises build on the form you created during thaquechapter. Add the first two answers
into your program after yobunp out the submission results. Callnp again, after these actions, to
verify the changes.

1. Usingpar amchange one of submitted values.
2. Append a value to the submitted checkbox values.

3. Add a default value to your pop up list. Submit the form vattifferent value and look at the
form elements. Does the pop up list get filled in with your sitted result or the default value?
Useoverri de to force the default to show.

Building a GET string

Very occasionally we don't actually want to have the useudirgata through a form, rather we'd just
like to give them a pre-made link to follow that passes ouips@ny parameters we need. In this
case we have to build the GET string ourselves. One thingthateed to make sure of is that the
parameters we pass are in a form that our browser will supportwe have to replace spaces with
%20 or + and escape other punctuation with the hexadecimal repgeggamof their ASCII values.

Fortunately theea . pmmodule is very helpful here, with a function callegtape. This function has
an oppositeinescape such that:

unescape(escape($string)) eq $string
is true, but you shouldn’t need to useescape all that often.
To build a GET string just do something like the following:

ny $get _string
ny $url

"section=" . $cgi->escape("Underwater photography");
a({-href=>"ny_script.cgi ?$get_string"}, "Current section");

In most cases GET strings are formed for us by the browser.

Perl Training Australia (http://perltraining.com.au/) 31

Chapter 5. Accepting and processing form input

File upload

CG . pmcan also be used to allow users to upload files. To do this we toespecify the correct
encoding type in the form element, if we use CGl.pgt’srt _nul ti part_forn() function, thenit'll
do the right thing. Alternately we can specify it ourselvesmally.

You'll find the below code it inwwv upl oad. ht m .

<htm >

<head>

<title>Upload a file</title>

</ head>

<body>

<hl>Upload a file</hl>

<p>

Pl ease choose a file to upl oad:

</ p>

<form acti on="cgi - bi n/ upl oad. cgi " net hod="POST"
enctype="nul tipart/formdata" >

<input type="file" nane="fil ename" >

<input type="submit" val ue="OK">

</ forn>

</ body >

</htm >

To handle file uploads we usel oad() instead obar an() . The value returned is special -- in a
scalar context, it gives you the filename of the first file ugkdwith that input name. In a list

context it gives you all of the filenames uploaded with thatuimame. These filenames can also use
be used as filehandles.

nmy $filename = $cgi->upl oad(’ fil enane’);
while(<$filename>) {
do something with file contents

}

To save the contents of the uploaded file, we carFuse: : Copy. We also USEi | e: : Tenp to ensure
that we have unique filename=st al saves us from having to check the supplied functions for
failure, by replacing them with a version which throws anept@on instead.

use File::Copy gw copy);
use File:: Temp gW tenpfile);
use Fatal gw(copy chnod);

ny $file_in = $cgi->upload(’'file’);
|f we have uploaded a file
if($file_in) {
ny ($fh_save, $new filenanme) =
tempfil e("student _XXXXX', DIR => "/tnmp/");
Prevent new ine translations by Perl
bi nmode($file_in);
bi nmode($f h_save);

copy($file_in, $fh_save);

32 Perl Training Australia (http://perltraining.com.au/)

}

Chapter 5. Accepting and processing form input

Change the permi ssions so that you will be able to read it.
In nost cases this isn't necessary as usually it will only
need to be read and edited by the web server

chnod 0644, $new fil enane;

Tell the user what the file has been saved to:
print "File copied to $new_ fil enanme";

The above code can be foundwaw cgi - bi n/ upl oad. cgi .

C Be mindful of the user id that runs your CGI programs on the server. In our case, all CGl

programs are run by www dat a. This means that your CGI programs can see, read and over-write
file uploads from the other members of your class. However, without changing the permissions,
you will not be able to read those files yourself. In other set-ups your programs may run with the
same permissions as yourself.

Differences of permissions and environments between your user id and that of your running CGI
programs can cause subtle errors. For example you may find that your program runs perfectly
from the command line, but not from a browser. This is often caused by having configuration
files, libraries or data directories with insufficient permissions to allow web server use.

To assist with text file processing, Perl attempts to translate newline characters from the

filesystem format to its own internal format. In the case of binary files this can be a problem. To
ensure that newline character codes remain untouched, we can use the bi nnode method, as
shown above.

Exercises

1. Edit thewwv cgi - bi n/ upl oad. cgi file to change theenpfi | e template §t udent _xxxxX) to
include your student number. For exampi@dent 1_XXXXX.

2. Upload a file and ensure that it appears in/the directory.

3. Edit your form script to handle file uploads. Upload a teetdind print its content out to the
browser.

4. Now print out only every second line. (Hint: You can usene % 2 == 0 to determine if§l i ne
is an even number.)

5. (Advanced) Edit theww cgi - bi n/ upl oad. cgi file to include a popup menu, listing out the
filenames for files you have previously uploaded. Allow therus select one of these files (or
upload another) for display.

You may want to look agl ob to help select the files matching your template.

Perl Training Australia (http://perltraining.com.au/) 33

Chapter 5. Accepting and processing form input

Chapter summary

34

Theca . pmmodule can be used to access parameters passed to the C@inprsing the
param() function.

Using thepar an() function in a list context will return all of the values padde the program
with that key.

Care should be takenphr an() is ever going to be passed to subroutines.

Calling par an() in a list context without a key will return all of the names béthame=value
pairs.

CGl.pm will fill in all of your form input fields with values fra par an() if possible. To prevent
this you have to use theerri de=>1 option in your input field.

File uploads must use multipart forms.

To access the file from an upload call il oad() function rather than thgar an) function. The
return value can be used as both the filename and a filehandle.

Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Security issues

In this chapter...

In this section we briefly examine some security issuesrayisbm the use of CGI scripts including
the risks of handling tainted data and how to avoid problems.

This is not a complete guide to CGI security, but rather a lrdscussion of a few important
points. Following all the recommendations in this chapti#rivet guarantee that your script is free
of security flaws, but it will certainly help.

For a more complete guide to Perl security, Perl Training Australia’s Perl Security

course-notes can be found on-line at http://perltraining.com.au/courses/perlsec.html .

The need for security

Always trust your users. Never trust their input.

It is easy to believe that, as a web programmer, you don’t teaarry about securityNothing
could be further from the truthiMeb programmers have the greatest need to understandtgecuri
issues as web programs are the source of a huge number ofreacid data compromises.

Web programs run on your server, with access to your datagbalbof strangers who have
unknown motives. Many of these strangers will be neutralemi¢;n. Some will be malicious. All are
security risks, because the problems they cause (even leatccan alter your systems, and
corrupt your data.

If you neglect the security issues inherent in writing cduh gjives strangers access to your servers,
then you run the risk of giving those strangers more accessytou intended. This is true whether
your CGI programs are written in Perl, Python, C, Java, PH>hing else.

Potential security pitfalls

Most of us wouldn't give shell access on a secure machineyi@aardom person who asked. Neither
would we install code from an unknown party just on their egfuYet it's surprising how often
security is overlooked when writing code. Any time that agyeon accepts input from an unknown
party and does not verify that input before using it to affgmir system, it is inviting a security
violation.

Cleaning up after security violations can be a tremenddudfjonakes sense, therefore, to try to
avoid them. Being aware of the issues is the first step; kngpWwow to avoid most of them is the
second.

The biggest security pitfall in most programs (regardldsdammguage) is best summed up as
unintended consequencé&onsider the following Perl code:

Perl Training Australia (http://perltraining.com.au/) 35

Chapter 6. Security issues

36

#!/usr/bin/perl -w

DON' T USE TH S CODE
use strict;

use CGE ;

nmy $filenane = CA->param(’'file’);

open(FILE, "/hone/test/$fil enane")
or die "Failed to open /hone/test/$filenane for reading: $!'";

print out contents of requested file
print <FlLE>;

In this code we have used the two-argument versiaspeii. Further, we haven’t specified a mode
for opening the file. Under normal circumstances, Perl vaiitane we meant to open this file for
reading. To many beginners, this code looks innocent. Yagine that we pass in the value:

..l..letcl/passwd

Oops. We just printed out the contents ef c/ passwd! Now imagine that we pass in the value:

..l../binfrm-rf /hone/test/ |

This tells Perl to execute the command on the left and pipetitgut to the given filehandle.
Printing out the contents okt ¢/ passwd is bad, but executing arbitrary commands is a disaster.

This isn’t rocket science. An average attacker can exgigtrnistake to see the contents of files they
shouldn’t, overwrite existing files and run system commakdsting code like the above is like
giving shell access to anyone who asks. And yet it's such ammmmistake.

Coding for security

Perl’'sopen function isn’t the only place where you can go wrong. Any fiioie or operator that
passes input via the shell requires careful attention,mayt contairshell meta-characters
Assuming you can't just avoid all such functions and opestitie only way to ensure your code is
safe is tonever trust input from the user

Fortunately this isn’t too hard, and can be done without taehreffort. If we know what characters
a field is allowed to have, we can use a regular expression ke swxe that only these characters are
used:

#!/usr/bin/perl -w

use strict;

use C3;

ny $filenane = CA->param(’'file’);

unl ess ($filename =~ /A ([\w.-]1+)$/) {
die "Filenane is not valid!'\n";

}

Filenane is okay (only contains A-Z, a-z, 0-9, _, . and -)

open(FILE, "<", "/home/test/$filename")
or die "Failed to open /hone/test/$filenane for reading: $!'";

print out contents of requested file
print <FlLE>;

Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Security issues

It is always better to specify what is allowed, rather tharatik not allowed. This is because it's
much easier to modify your expression to allow a few extraatiers if necessary, whereas it is
almost impossible to be sure that you've lisidtthe potentially bad characters.

However, even if we're careful, we can still make mistakesuliin't it be nice if Perl could provide
some extra level of security to ensure that we don't use stedlinput by accident? It can, by using
taint mode

Taint checking

It's always important that we validate our input, and thipasticularly true if we're working in a
security sensitive context. Unfortunately it's easy ta@ftrour validation steps, even if you are
programming defensively.

To help prevent this; Perl hasTaint mode Taint mode enforces the following rule:

You may not use data derived from outside your program t@affemething else outside your program --
at least, not by accident.

Taint mode achieves its aim by marking all data that comems >ernal sources dsinted This
data will then be considered unsuitable for certain openati

« Executing system commands

« Modifying files

« Modifying directories

« Modifying processes

« Invoking any shell

- Performing a match in a regular expression using te. .. }) construct
- Executing code using string eval

Attempting to use tainted data for any of these operatiosigt®in an exception:

Insecure dependency in open while running with -T switcmsé¢cure.pl line 7.

Tainted data is communicable. Thus the result of any exjgresentaining tainted data is also
considered tainted.

Turning on taint

Taint mode automatically enabled when Perl detects tisatuitining with differing real and effective
user or group ids -- which most commonly occurs when the puogs running setid.

Taint mode can also be explicitly turned on by using-thewitch on the shebang line or command
line.

#!/usr/bin/perl -wTl # Taint node is enabl ed

It's highly recommended that taint mode be enabled for angam that's running on behalf of
someone else, such as a CGlI script or a daemon that accepections from the outside world.
Once taint checks are enabled, they cannot be turned off.

Using taint checks is often a good idea even when we're nosecarity-sensitive context. This is
because it strongly encourages the good programming (@udity® practice of checking incoming
data before using it.

Perl Training Australia (http://perltraining.com.au/) 37

Chapter 6. Security issues

Untainting your data

The only way to clear the taint flag on your data is to use a caqguegular expression on it.
($clean_filenane) = ($filename =~ /~([\W.-]+)$/);

if (not defined $clean_filenane) {
die "Filenane is not valid!\n"

}

Filenane is okay (only contains A-Z, a-z, _, . and -)

The contents of the special variables $2, (and so on) are also considered clean, busitsngly
recommended that you use the list-capturing syntax showwmeads, $2 can be set to
indeterminate-yet-clean values if your regular expresfads, whereas a list-capturing syntax
guaranteescl! ean_fi | ename Will be undefined on failure.

Passing your data through a regular expression does nottimgtis safe to use. However it should
force you to think about it first. There’s nothing to stop yoorfi bulk-untainting data with an
expression like (. *)/ s, but doing so is extremely trusting of your data, and celyaiot
recommended.

Environment variables $SENV{PATH}

In addition to data our program receives while running, ve® &lave to be aware of environment
variables that can be set. In particular, if we are intentlingake any system calls, we need to be
aware Of$ENV{ PATH} .

ThePATH environment variable tells Perl where to look for system p@nds we might invoke.
However, since this value comes from outside our prograooyitains tainted data. The best solution
is to ensure that we sgENV{ PATH} to a known, good value:

#!/usr/bin/perl -wTl
use strict;

$ENV{ PATH} = q{/bi n:/usr/bin};

Names can have odd characters

When constructing your taint checks keep in mind that pebale names which may contain all
sorts of letters. For example some names are hypherfate@-Mareeothers include spaces
Wellington SmithSome names even include punctuat©itiara, Smith Jr, Lt.-Col lvan

Company names may include even more punctuation optimsig&Jacksonsrahooletc.

When allowing characters for names, make sure you try to lobeas®nable as possible. That doesn't
mean you should allow any character in, but it does meanftigatire adding this information into
a database, then you probably want to consider any conseggidrere as well!

38 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Security issues

Exercises

1. The HTML filewwv fi nger . ht M asks the user for a username and passes that to the
www/ cgi - bi n/ finger. cgi program. Enter your username and see that it works.

2. Why is the data from the user tainted?
3. Turn on taint fofmw/ cgi - bi n/ fi nger. cgi . Try re-submitting the form, it should fail.

4. Changewwv cgi - bi n/ fi nger. cgi So that it untaints the data. Make sure that your script ig onl
allowing alpha-numeric characters.

5. Try submitting the form with various usernames to ted¢liake sure it rejects ones that are
invalid. Below are some possible usernames to try:
pj f
1234
% oo

fred; echo $PATH
fred; echo$PATH

Cross-site scripting

Cross-site scripting is an exploit where the attacker issealicious coding into otherwise trusted
data. The malicious coding might be javascript designeéad cookies and submit that information
to a third-party site, or to take advantage of a known browser Or it might just be used to by-pass
profanity filters, in order to upset your site’s audience.

Using taint checking can do a lot to help avoid cross-sitgpsog attacks. So can using tleai . pm
module. For example, imagine that you have the followingecod

use CQ3 ;
ny $cgi = CA->new);
ny $nane = $cgi - >paran(’ nane’);

print $cgi->header, "<p>Hello $name</p>";

what happens if the user submits the following name?

Fred

<script><!--

alert ("G ve ne your noney");
--></script>

This will generate:

<p>Hel l o Fred

<script><!--

alert("G ve nme your noney");
--></script></p>

What we've done is allow an otherwise unknown user to exgemsescript of their choosing on our
website. This may read cookies, intercept mouse movemargsen rewrite our webpage in subtle
or not-so-subtle ways. If our submitted information is usegopulate pages visible to user users (as
may happen in a content management system, wiki, onlinerfpou other site) then this sort of

cross site scriptingittack could be used to fool innocent users into revealiag their login details

or other information.

Perl Training Australia (http://perltraining.com.au/) 39

Chapter 6. Security issues

Other

We can avoid cross-site scripting attacks in a few ways. Iflee’t intend our user to be submitting
HTML, then we carescapét before sending it to the browser. It converts HTML chaeastsuch as
less-than €) into HTML entities such asl t ; . CGl automatically escapes these characters when
they’re used as arguments fiorm generating functionsiowever itdoes noescape them when
passed to any other functions, suchag) orp().

To make sure that we escape our text, we have to explicithG&al's escapeHTM. function:

Cd ->new() ;
$cgi - >paranm(’ nane’);

ny $cgi
ny $nane

print $cgi->header, "<p>", $cgi - >escapeHTM_("Hell o $nane"), "</ p>";
Alternatively:

print $cgi->header, $cgi->p($cgi - >escapeHTM("Hel |l o $nane"));

Anot her alternative:

ny $safe_name = $cgi - >escapeHTM.($nane) :
print $cgi->header, "<p>Hello $safe_name</p>";

If you need to accept HTML for display then you may wish to examine the HTM.: : Scr ubber and
HTM.: : Sani ti zer modules available from the CPAN.

forms might be submitted

One of the biggest mistakes people have made in the CGI pregsato believe that onlgheir form
will be submitted back to the server. Thus, if the HTML spesifihat only 30 characters can be
added to a field, this naive programmer may believe that tteerééurned will only ever have 30
characters for that field.

This is not true. Anyone can submit any form they like, frony aarver, to your CGI program. This
means that they can edit the hidden price field on your forrgive them a better price than you
were offering. It means they can submit hundreds of charsetken your database is only expecting
10. It means that they can add fields, delete fields and géndmivhat they like to your form
information. And your CGI program will have to handle it.

You cannot rely on client-side code to validate the datadhaer might send. Because the client
may not be using your form, or they might have client-sidescdidabled. So not only must you
check that your data contains safe characters, but you mastethat the data is the correct length
if you have length restrictions and that other restraintsheandled.

We’'ll cover more on data validation soon.

Privacy

40

Keep in mind when you code that under standard H&Verythings submitted in the clear. Even
though passwords are hashed out when users enter thens, dhnily ito prevent casual
over-the-shoulder disclosure. This information willldié submitted in clear text and may be stored
during the journey.

Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Security issues

If data security is important, if your data is at all sengtiuse secure HTTP. The HTTPS protocol
opens a secure connection between the web client and salheaita on this connection is
encrypted. This is essential for all transactions invajvnivate information (such as medical
details, bank information, credit card numbers, etc) meneiee.

CGl scripts run on a secure server exactly as they do on aey sénver.

In this chapter...

« Security should be a major concern for all web developers.

« Web programs are run by unknown parties with unknown matives

« We should never trust users’ data.

- Taint mode helps identify unvalidated data from the useotgefve pass it to an external program.
- We can untaint our data by capturing it from a regular expoess

« Cd . pmcan protect us from problems caused by cross-site scripttagks.

- We cannot assume that data coming to our program was subfite our associated form.

Perl Training Australia (http://perltraining.com.au/) 41

Chapter 6. Security issues

42 Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Splitting HTML and code with
HTML:: Template

In this chapter...

Embedding HTML inside your Perl script can make it difficdtrhaintain both your HTML and
your code. This is especially the case if somebody else tingrthe HTML and may wish to change
it at a later date.

To avoid the issue of mixing code and HTML, Perl has a numbeiseful templating modules

which can be used to keep things separate. These have a gneatvantages -- it's easy to change
the interface, or have multiple interfaces available. \Webigners and programmers are less likely to
step on each others toes, and people can use the most apgdpois for each part. This chapter

will explain the use of therM.: : Tenpl at e module, although you should be aware that other
templating modules are available.

The HTML::Template module does not come standard with Perl, but can be easily

downloaded from CPAN (the Comprehensive Perl Archive Network) (http://www.cpan.org/). You
can get documentation for it by reading perldoc HTML:: Template .

&
If you need a more powerful templating system than HTM.: : Tenpl at e, then you may wish to use
Template Toolkit (http://www.template-toolkit.org/).

What is HTML::Template

Like theca module,HTM.: : Tenpl at e is @ module to help make your life easier when writing CGl
scripts. Instead of embedding HTML into your coe®@yL: : Tenpl at e allows you to load a custom
template or blueprint and fill in special fields. If used pndpedT™M.: : Tenpl at e can eliminate the
need to have any HTML in your script at all.

Here’s a simple template that prints a library-book reminde

<htm >

<head><title>Library rem nder</title></head>

<body>

<p>

Dear <!-- TMPL_VAR nanme="nane" -->,

</ p>

<p>

Don’t forget that your book titled <!-- TMPL_VAR nane="title" -->
by <!--TMPL_VAR nanme="author" --> is due back

<!-- TMPL_VAR nane="duedate" -->.

</ p>

<p>

If your book is returned late, a fine of $<!-- TMPL_VAR nane="fine" -->
will apply for each <!-- TMPL_VAR name="timeperiod" --> the book
is late.

</ p>

Perl Training Australia (http://perltraining.com.au/) 43

Chapter 7. Splitting HTML and code with HTML:: Template

<p>

Yours sincerely,

<i >The managenent </i >.
</ p>

</ body >

</htm >

TheTwPL_VAR comments are used byM.: : Tenpl at e, and get replaced with text supplied by the
program at execution time. Here’s a script that uses thelsmpe've just seen to print a library
reminder.

#!/usr/bin/perl -w

use strict;

use HTM.:: Tenpl at e;

my $tenplate = HTM.:: Tenpl ate- >newfil ename => "“library. htm");

$t enpl at e- >par an(

name => "Paul Fenw ck",

title => "Progranming Perl, 3rd Ed",

aut hor => "Larry Wall, Tom Christiansen and Jon Orwant",
date => "next Wednesday",

fine => 2. 20,

timeperiod => "week"

)
print "Content-Type: text/htm\n\n", $tenpl at e- >out put ;

Yes, it really is that simple. Sina&M_: : Tenpl at e let’s us split the HTML from the programming
interface, we’'ll talk about them separately.

The template explained

44

HTM.: : Tenpl at e provides a very powerful templating mechanism with manyufiess more than just
simple variable substitution. In this section we’ll talkoalh these features, starting from the simple
ones and proceeding onto more advanced topics.

Conventions

HTM.: : Tenpl at e accepts two kinds of tags. In the example above, we used thdl HBmments
style. These allow us to create valid HTML which we can edthvetandard HTML editors.

We can also use tags similar to standard HTML tags. These are compact, but may upset various
HTML editors, and are likely to cause problems with validatservices. We can use either
comment-style or tag-style templating methods, and we darboth styles in the same document if
we desire. Here's the example above using the HTML-styleotatimg.

<htm >

<head><titlex>Library rem nder</title></head>

<body>

<p>

Dear <TMPL_VAR nane="nanme" >,

</ p>

<p>

Don't forget that your book titled <TMPL_VAR nanme="title">
by <TMPL_VAR nanme="author"> i s due back

Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Splitting HTML and code with HTML::Template

<TWMPL_VAR nane="duedat e" >.

</ p>

<p>

I f your book is returned late, a fine of $<TMPL_VAR nane="fine" >
will apply for each <TMPL_VAR nanme="ti neperi od"> the book
is late.

</ p>

<p>

Yours sincerely,

 &bsp; &bsp; <i >The managenent </i >.

</ body >

</htm >

In these notes and exercises we'll use the comments-sgde Taese show up more clearly with
syntax highlighting, allow us to validate our code, and apeagally recommended.

There’s another note of convention that we need to mentiéorbave progress any further, and
that's of filenames:TM: : Tenpl at e doesn’t care what the name of a template filess we can use
anything we like. Programmers traditionally prefer to usesfending in t mpl as it makes it obvious
that they're templates. Web-designers, on the other hand,tb prefer ht i because it means their
favourite HTML-editor is more likely to play nicely with thife. In these notes, we’'ll usent m --
after all, a plain HTML file is just aiTM_: : Tenpl at e file without any special tags.

Simple template fields

With the code already presented we've shown how totwee VAR fields as place holders for data
that we’'ll plug into the document at run-time. How they wohosld be fairly self-explanatory -- the
tag is removed and the data we supply is inserted into iteplac

TMPL_VAR and other templating tags don’t need to obey the regulas fieiTML. For example, it's
perfectly valid to have a template tag inside an HTML tag. fdilewing code lets us set the alt tag
on an image at run-time.

<I MG SRC="/i mages/ pi cture.jpg" ALT="<!-- TMPL_VAR NAME=f 00 -->">

Exercises

1. Viewww cgi - bi n/ pet page. cgi in your browser.

2. Take the HTML int enpl at es/ pet page. ht i and modify it to insert templating fields faane,
age andpet .

3. Viewwww/ cgi - bi n/ pet page. cgi in your browser and observe the effects.

Non-web accessible templates

It should be noted that our templates are stored outsiderofzeb-accessible document root, and
there’s a very good reason for this. Templates are not ie@talbe seen by the end-user - they need
to be processed by one of our programs first. Serving a rawi&eng likely to be confusing to a

user at best. At worst, it may disclose information that werided to keep secret.

Perl Training Australia (http://perltraining.com.au/) 45

Chapter 7. Splitting HTML and code with HTML:: Template

46

By storing the templates in a separate, non-web accessibldaty, we avoid any risk of them
accidentally being served to the world. We also have therastdge of keeping all of our templates in
one place, making them easier to maintain the future.

The same applies to configuration files, modules, and lieésakie certainly don’t want these being
served by accident, as they may contain passwords or othsitige information that could place
our systems at risk.

Escaping in template fields

Sometimes we want to don’t want our data to appear verbasiderthe HTML that we're
producing. This is particularly the case if we're insertaaa that might contain less-than or
greater-than signs, or other characters that have spee&iimg. In this case we want to 8T ML
encodingSometimes we want to encode information into a URL, in whiabecwe want to doRL
encoding Sometimes we might even want to display data in its encodddiaencoded forms in the
same page.

Rather than having to do this tedious escaping ourselvesriPerl code, we can get
HTM.: : Tenpl at e to do the hard work for us. This is also best illustrated bynepiz.

This is how | escape for HTM.:

<!-- TMPL_VAR nane="data" escape="htm" -->

This is how | escape for a URL:

<!-- TMPL_VAR nane="data" escape="url" -->

Here is ny data with no escaping:

<!-- TMPL_VAR nane="dat a" -->

Most importantly, by ensuring that we correctly escape @iadve reduce the opportunity for
cross-site scriptingittacks.

If you're generating the contents of your template tags withca module, then you won't need to
use these escapes. As described previously in these raes) tmodule will use the appropriate
type of escaping needed for the task at hand.

Conditionals

Sometimes you'll want to display different content depegdipon the execution of your program.
In some cases we might select a template to use at runtimendem upon if, for example, our user
was borrowing or returning a book. In other cases, we mightwadisplay fundamentally the same
page, but choose to add or remove some sections dependinginpamstances. With our library
example, we might want to display a reminder to the user if theve a book that's overdue, or alert
them that a book they've placed on hold is available for being.

We could use amvpL_vaRtag which we can then bind to either the empty string or the Hhich
contains our reminder message and associated formattiad viill work, but it potentially means
having ugly chunks of HTML in our code, especially if the rexér comes wrapped in a table with
images and special fonts. We started using.: : Tenpl at e to avoid this very situation, so isn’'t there
a better way?

The solution is to useTM.: : Tenpl at e’s conditional tags. Here’s our example above with an
optional section that only gets displayed if a special ngsgists.

Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Splitting HTML and code with HTML::Template

<htm >

<head><title>Library rem nder</title></head>
<body >

<!-- TMPL_I F nane="nessage" >

<div id="nmessage" >
PLEASE NOTE</ b>
<!-- TMPL_VAR nanme="nessage" -->
</ div>
<!-- [TMPL_IF -->
<p>
Dear <!-- TMPL_VAR nanme="nane" -->,
</ p>
<p>
Don’t forget that your book titled <!-- TMPL_VAR nane="title" --> by
<!-- TMPL_VAR nanme="author" --> is due back <!-- TMPL_VAR nane="duedate" -->.
</ p>
<p>
If your book is returned late, a fine of $<!-- TMPL_VAR nane="fine" -->
will apply for each <!-- TMPL_VAR nanme="timeperiod" --> the book
is late.
</ p>
<p>
Yours sincerely,
</ p>
 &bsp; <l >The managenent </ | >.
</ body>
</htm >

HTM.: : Tenpl at e uses the same rules for truth as does regular Perl. As you exglct, there’s also
TMPL_ELSE andTMPL_UNLESS tags too. Unfortunately there is no such thing as@L_ELSI F tag.

@There is no such thing as a/ TMPL_ELSE (close TMPL_ELSE) tag. Instead you should close with
the same tag that you used to open the conditional. That means that every TMPL_I F needs to
have a matching / TMPL_I F, and every TMPL_UNLESS heeds a matching / TMPL_UNLESS, regardless of
whether you use TMPL_ELSE tags or not.

Exercises

1. Take the template irenpl at es/ t npl - cond. ht i and modify it so that it displays some extra
text and the contents of ther or parameter only if it exists.

2. Use thewwv cgi - bi n/ t npl - cond. cgi Script to test your changes.

Looping constructs

The examples that we've seen so far are great if we're dealitigsingular pieces of data, but what
if we want to display a list of books a user has currently baad? This list could contain any
number of books. How would we write a template to deal with2ha

A naive approach would be to usampPL_var tag where we wish to insert the list, then build that list
and bind it into place. That's great, except now our prograsithe work of doing the HTML mark
up for the list, and that’s something we're trying to avoid.sblve this, we need to be able to deal
with loops in our templates.

Perl Training Australia (http://perltraining.com.au/) a7

Chapter 7. Splitting HTML and code with HTML:: Template

Loops inHTM.: : Tenpl at e are almost identical in concept to Pefls each loops -- that is, we step
through a list of values, examining the next one in our ligrgitime we go through the loop. Let's
see an example.

<!-- TMPL_LOOP nane="books_borrowed" -->
<i><!-- TMPL_VAR nane="author" --></i>
<!-- TMPL_VAR nane="title" -->
(<!'-- TMPL_VAR nane="publisher" -->)

</ TMPL_LOOP>
<lul >

Here we've printed an unordered list of books, with some isppéarmatting for author, title and
publisher. If we wanted to, we could have the title of the booine first, or we could print the books
out in a table, or do any other formatting change, all withmaiting to touch our Perl code at all.

These looping constructs can be very powerful. Your template can be set up to perform

different actions for the first and last lines of your loop (for example, opening and closing table
tags), and can distinguish between odd and even rows (for example, in case you want
alternating rows to have different backgrounds). It's even possible to have conditional constructs
based upon whether or not a given loop is empty or not. While the coverage of these concepts is
beyond the scope of this course, all the information can be found using perldoc

HTML:: Template .

Including files

Often you'll be working on a website that has elements thatammon to every page, like headers
or footers, or huge animated advertisements with musicaksc If people are sensible, these
common elements are usually placed into separate files andrtierted into the HTML using some
mechanism depending upon your web-server or operatingeament.

Now, it wouldn't it be nice if we could include these files wheasing our templates as well? Well,
there’s a better way than loading the contents intera_vartag, and that's using avPL_I NCLUDE
tag. Let's see some in operation.

<!-- TMPL_I NCLUDE name="header.htm " -->
Thank-you for flying with <!-- TMPL_I NCLUDE nane="airline_l ogo" -->
<!-- TMPL_I NCLUDE nane="footer.htm" -->

TMPL_I NCLUDE includes the file contents as if it were cut’'n’pasted dingtito the parent file at that
point. This means that your include files can include tenmpdgihformation (including further
include directives), just like your parent file. Since irddd files can include other files, there’s
potential to get into trouble with files endlessly includieach otherdT™.: : Tenpl at e provides some
protection to this by only allowing includes 10 levels deglthough you can change or disable that
if you like.

Using Template Objects

Now, you've all had some experience with writing templates] as you can see it's possible to do
this without any understanding of what the code that praet®wese templates looks like. That's an

48 Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Splitting HTML and code with HTML::Template
important thing to remember, someone doesn't need to knel®eany programming language) to
create or edit a template. That's what makes them so useful.

In this section, we'll cover what the programmer needs taxkimoorder to have templates work the
way they expect.

Binding simple parameters

We've already seen a script that binds values to parametertemplate. We use thar ammethod
to set values. While this has the same name and a similaridurtctthat of theca module, don't be
fooled -- the way it processes arguments is subtly different

To bind a value to a parameter, we pass in that parameter’s aanhits value, like this:
#!/usr/bin/perl -w

use strict;

use HTM.:: Tenpl at e;

nmy $tenplate = HTM.:: Tenpl ate- >newfil ename => "“library. htm");

$tenpl ate- >paran(title => "Programring Perl, 3rd Ed");
$t enpl at e- >paran(aut hor => "Larry Wall, Tom Christiansen and Jon Orwant");

As you can see from the example above, there’s no need td et glarameters in the same call,
you can figure out parameters and set them as you go. If you dbtavaet a number of values at
once, you can; just pass in as many name-value pairs as ydu nee

$t enpl at e- >par an(

name => "Paul Fenw ck",

title => "Programming Perl, 3rd Ed",

aut hor => "Larry Wall, Tom Christiansen and Jon Orwant",
date => "next Wednesday",

fine => 2.20,

timeperiod => "week"

)

You might have realised that these name-value pairs looklgwfamiliar to things we put into (and
take out of) hashes. If you already have a hash of all the datanged, you can plug that directly
into thepar an() method and things will work how you’'d expect:

$t enpl at e- >par an(% nf o) ;

C If you try to bind a parameter that doesn’t exist in the template you're using, an exception will be
thrown (usually resulting in your script dying with an appropriate error). Often this is what you
want, as it makes typos immediately obvious.

Sometimes you specifically don’t want this behaviour. For example, you might write a subroutine
which fills in information about the current user. The subroutine would like to provide that
information without caring that the template will use all of it, and having your script die just
because you didn’t want to show the user’s age can be a major headache. In these cases, you
can request that HTM.: : Tenpl at e just ignore parameters that don'’t exist. This is requested at the
time you create the template, like this:

ny $tenplate = HTM.:: Tenpl at e- >new(

fil enanme => "invite.htm",
di e_on_bad_paranms => 0,

Perl Training Australia (http://perltraining.com.au/) 49

Chapter 7. Splitting HTML and code with HTML:: Template

50

Binding complex parameters

We've seen how to deal with simple parameters, which aret §pedealing with singular pieces of
data, but they don’t answer what we need to do for loops. Téedls something a little bit more
complex. We still us@ar amto bind values, but instead of binding each parameter toglesiralue,
we instead bind it to a list reference.

Now, we can't just use any old list reference. You s@@/: : Tenpl at e lets us set a whole swag of
different variables each time we go around one of its loopd,asimple list likg 3, 4, 6, 7] only
contains a single value in each position. What we instead teaurse is a list of hash references,
because a hastancontain multiple name-value pairs.

Relax, it sounds difficult, but it's really quite simple, espally when you have an example to work
by.

$t enpl at e- >paran(library_books =>
[
{

title => "Progranmm ng Perl",
author => "Larry Wall, et al",

title => "pject Oriented Perl",
aut hor => "Dami an Conway",

)

In the example above, our loop would have two iterations. fireetime around we’'d be dealing with
the "Programming Perl" book, and the second time the "Olgjeiented Perl" book. If you feel
comfortable with references, you can build up this struetarother ways.

Exercises

This should bring all of these concepts together.

1.Intenpl ates/total . htm you'll find a HTML template. This prints out the headers andtéys,
and an empty table. Add a looping construct to the table bodkat we can fill in the table.

2. Inwwv cgi - bin/total . cgi you'll find scaffolding for this exercise. This scaffoldiirgcludes a
number of hash references. Use these to populate the tabielile above exercise.

3. You'll notice some more template variables #npl at es/ tot al . ht m , pick some values and
set these from your cgi program.

Associating other objects

Wow, thisHTM.: : Tenpl at e module is great stuff. I've got a CGlI script which takes infyomn a user,
and then displays some or all of it back on a confirmation pégegavith some other details. Being
a good programmer, I'm much too lazy to pull everything oonfrmyca object and push them
back into myHTM.: : Tenpl at e Object. Is there any way | can do this automatically?

Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Splitting HTML and code with HTML::Template

It so happens thattm: : Tenpl at e allows you toassociatea template with another object which has
a parameter list, such asca object. This means that if you don't provide a value for a give
parameter, the value on thssociated objeatill be used instead.

Say that a user has filled in their name, address, phone nuarttenumber of plush penguin toys
they own. Rather than having code like this:

use strict;

use CQ3 ;

use HTM.:: Tenpl at €;

ny $cgi = CA - >new,
ny $tenplate = HTM.:: Tenpl at e- >new(fil enane => "pengui nrego. htm ");

$t enpl at e- >par an(

"nane", $cgi - >par an(" nane"),
"address", $cgi->paran("address"),
"phone", $cgi - >par an(" phone"),
"pengui ns", $cgi - >par an(" pengui ns")

);
We can instead have code that looks like this:

#!/usr/bin/perl -w
use strict;

use C4d;

use HTM.:: Tenpl at e;

ny $cgi = CA - >new,

ny $tenplate = HTM.: : Tenpl at e- >new(
filename => "penguinrego.htm",
associ ate => $cgi

)

That's it. Fields we don'tfill in explicitly just get copiedub of our CGI object without any extra
work on our behalf. Fields that we do fill in ourselves will leathose values. Nifty, isn't it?

Using CGIl.pm with HTML:: Template

We've already seen howrM: : Tenpl at e and theca module can work together in sharing data.
This section now explores using both modules together fodmam program maintainability, as
well as a few common tricks that you might like to employ.

HTML::Template can only fill in the parts of our template fohish we have tags. This is fantastic
for single values. However consider the problem of a seistcin which we’re generating values
based upon data available to our CGI application. Also dmrghat we wish to dynamically select a
value, potentially based upon previous user input:

<sel ect name="title">

<option value="M">M </ opti on>

<option value="Ms">Ms</option>

<option value="M ss" >M ss</option>

<option sel ected="sel ected" val ue="M" >Ms</option>
</ sel ect >

In a select list, we mark the selected value by adding thegstskl ect ed="sel ect ed". Values
which aren’ t selected don't get this string. We can generatke for select lists with a
TMPL_LOOP, however it isn’t very tidy:

Perl Training Australia (http://perltraining.com.au/) 51

Chapter 7. Splitting HTML and code with HTML:: Template

52

<sel ect nane="title">
<!-- TMPL_LOOP narme="title_l oop" -->
<option value="<!-- TMPL_VAR nane=val ue -->"
<!-- TMPL_I F nanme="sel ected" -->
sel ected = "sel ected"
<l-- [TMPL_IF -->
><!-- TMPL_VAR name="val ue" --></option>
<!-- [TMPL_LOOP -->

Further, we need to ensure that we setlaect ed value for each item in our select list in our CGI
script:

ny @itle_|loop;
foreach ny $title (gW{ M Ms Mss Ms)) {

ny $selected = ($cgi->paran(“title") eq $title);

push @itle_loop, {
val ue = $title,
sel ected => $sel ect ed,

}

$tenpl ate->paran(title_|loop => @itle_|loop);

What a nightmare! This should be an easy matter, and so itlisgedneed to do is get CGI to
generate the select list and then plug that into our tempiaie the above template becomes:

<!-- TMPL_VAR nanme="title_select" -->

and the CGI code becomes:

ny $title_select = $cgi - >popup_nenu(

- name = "title",

-values => [gm{(M Ms Mss Ms)],
)i

$tenpl ate->paran(title_select => $title_select);
That's easier to read, maintain and much less likely to doritags. Unfortunately it reduces the
ability for the template maintainer to control the HTML whits generated. There’s an alternative

way of handling situations like this usimgm_: : Fi | | I nFor mwhich we will examine in a few pages
time.

Exercise

1. Write a basic form usingTm: : Tenpl at e andcda . Make sure your form includes a text box,
and either a checkbox group or select list. Ensure that yoe teamplate tags for the values of
each form field.

2. Write a CGl script which prints out that form.
3. Submit your form and see that your text box value is notraatally filled in.

4. Associate youcd object with your template, and submit some values. Make thateyour
whole form is now automatically filled in.

Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Splitting HTML and code with HTML::Template

Less templating with HTML.::FillinForm

HTM.: : Tenpl at e andcd . pmmake a great pair. However, sometimes it would be even esier
didn’t have to use them. Editing each HTML form to add temptatags for all the values is a chore.
Generating each form element in CGI affects the opporesftr the web developers to have things
appear exactly the way they want. It also means that thetimgtémplate isn't complete, it's

missing a number of form elements that are essential fosgs u

Wouldn't it be nice, if we could just say: there’s a HTML former there, fill it in?

This is whatHTM.: : Fi | | | nFor mlets us doHTM.: : Fi | | | nFor mautomatically inserts data into
HTML input fields, text areas, radio buttons, checkboxessai€elct tags. It can be used to insert data
from a database, a pre-existing form submission or purpesergted object or hash.

use CG3;
use HTM.:: FillInForm

Cd ->new() ;
HTM.: : Fi | I | nFor m >new() ;

ny $cgi
ny $fif

Fill in the HTM. formw th data from $cgi
ny $output = $fif->fill(

file => "formhtm",

fobj ect => $cgi,
)i

print $cgi->headers();
print $output;

The above example will open the filefiarm ht M and fill it in with the data previously submitted
(from scgi). If nothing has been submitted, the form will use any defatguments; just as if you
had navigated to it directly.

HTM.: : Fi | | I nFor misn't a replacement fa#TM.: : Tenpl at e. There are many situations where you
may wish to use both of them together. For example, you maly teiprompt the user to correct
some details on a registration page, using the same fornthiafilled in. This message can be
added usingmPL_I F andTMPL_VAR tags.

To useHTM.: : Fi | | | nFor mwith HTML: : Tenpl at e we need to tweak the above code a little to allow us
to giveHTM.: : Fi | | | nFor mthe processed template:

use C3;
use HTM.:: FilllnForm
use HTM.:: Tenpl at e;

ny $cgi C4A - >new() ;

ny $fif HTM.: : Fi | I I nFor m >new() ;

ny $tenplate = HTM.: : Tenpl at e- >new(
filename => "formhtm",
associ ate => $cgi

)

Add any extra stuff to the tenplate, and then get its output
ny $htm = $tenpl at e- >out put ;

Fill in the HTM. formw th data from $cgi
ny $output = $fif->fill(
scalarref => \$htm,
f obj ect => $cgi ,
)i
print $cgi->header();
print $output;

Perl Training Australia (http://perltraining.com.au/) 53

Chapter 7. Splitting HTML and code with HTML:: Template

That's it! Now we can write our forms out in full HTML and havieedm "just work". We can use
templates when we want to uniformly include content, or gatgeconditional material. CGl.pm
processes and handles our parameters but is not necessarysoHTML generation.

Exercise

1. Change your template from the previous exercise to irecthd select list or checkbox group in
the HTML.

2. Change your CGl script to use HTML::FilllnForm.
3. Submit your form and verify that your select list or cheaklgroup is filled in.

4. Convert the rest of your template to just be standard HTW&rify thatHTM.: : Fi I | | nFor m
continues to fill in the form values.

Chapter Summary

« HTM.: : Tenpl at e allows you to split your Perl code from your HTML code.

« You can use either standard tagcomment tagfor writing templating fields. You can mix both
in the same document.

- Template fields can be used to escape the text which is bouhdrofor both inclusion in HTML
and in URLs.

« HTM.: : Tenpl at e supports conditionals and loops, which are particulargfuifor generating
tables.

« HTM.: : Tenpl at e can be used to include files into your HTML. These files are elsduated for
templating tags.

« To bind values to loops, we need to passL: : Tenpl at e a list reference containing many hash
references.

. It's possible toassociatea ca@ object with aHTM.: : Tenpl at e object, to have parameters
submitted by the user automatically filled in.

« CG . pmcan be used to generate multi-part form elementsifor: : Tenpl ate.

e HTM.:: Fill I nFormcan be used to fill in a HTML form with data froos . pm

Notes

1. Infact, you don’'t even have to use filenames at all. You @asjorM_: : Tenpl at e other things to
use as templates. Sperldoc HTML ::Template for more details.

54 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Data validation

In this chapter...

Data validation is essential for any program, regardleds oble, however it is particularly
important when writing web applications. Users may be lazrgguided, have poor typing skills, or
may even be looking for a way to exploit your system. As sutshimportant that we check and
verify any data that is provided by the browser.

Client-side checking

One elegant way of performing validation is to use javaseip perfornclient-side checkingrlhis
allows our application to give immediate feedback if therdsses missed a required field or provided
invalid data. However client-side checking shon&lerbe relied upon. Users may have javascript
disabled or restricted, and a clever attacker will simplyrsit data directly to your server. So while
client-side checking will improve your user-experienteldes little to improve the overall security
of your application.

Instead, it is essential that all data is checked on the sbefere being used. Perl’s taint mode can
assist as a safety harness in this regard, however it deeswé all possible problems.

Although we don't cover client-side checking in this course, there are a number of excellent
Javascript resources to help you. In particular, the JSAN (JavaScript Archive Network) library’s
Dat a. For nval i dat or can be built from the same profile as Dat a: : For nval i dat or (covered below)
to provide consistent checking both client and server-side.

More information about Dat a. For nval i dat or can be found at
http://www.openjsan.org/doc/u/un/unrtst/Data/FormValidator/.

Simple server-side checking

Below is an example of basic data validation. A form to subimthis file can be found in
ww/ val i dat e. ht ni and the below code imwv cgi - bi n/ val i date. cgi .

#!/usr/bin/perl -w

use strict;

use CQ3;

use CA::Carp gwfatal sToBrowser);

my $cgi = CGA->new();

print $cgi->header;
print $cgi->start_htnml ({-title=> "Validation Script"});

ny @rrors;

push (@rrors, "Year nust be nuneric") if $cgi->paran(’year’) !~ /MN\d+$/;
push (@rrors, "You must fill in your name") if $cgi->paran(’'nane’) eq "";

push (@rrors, "URL nust begin with http://") if $cgi->paranm(’url’) !~ n{~http://};

Perl Training Australia (http://perltraining.com.au/) 55

Chapter 8. Data validation

if (@rrors) {
print $cgi->h2("Errors"), "\n",
$cgi ->start _ul, "\'n";

foreach (@rrors) {
print $cgi->li($_), "\n";
}

print $cgi->end_ul, "\'n";
} else {
print $cgi->p("Congratul ations, no errors!"), "\n";

}
print $cgi->end_htmn ;

Exercise

Open the form for the validation program in your browser. 3upmitting the form with various
inputs.

Group exercise

1. What, if any, issues can you spot with the current val@athecks that we have?
2. How can we improve these checks?

3. How could we handle validating multiple fields with simmitonstraints: multiple graduation
dates, first name fields vs surnames, etc.

Data::FormValidator

56

The version of Dat a: : For nval i dat or we show off in this chapter is 3.63. Later versions are

backwards compatible, but may have different recommendations. To learn more about
Dat a: : For mval i dat or Visit its page on the CPAN at
http://search.cpan.org/dist/Data-FormValidator/.

As identified in the above exercises, form validation carbgeéth very repetitive and rather
complicated. Since it's such a common problem, there’sadlye good solution.

Dat a: : For nval i dat or allows us to specify which fields are required, and also teifpgalidation
functions for each of these fields. There are some defaultaweise, but we can also create our
own. The collection of these rules is called a profile.

Required and optional fields

The most logical part of our profile to start with is that whapecifies what is, and isn’t required.
We can do this by creating the keys in our profile hash:

Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Data validation

ny Y%rofile = (
required => [qw (
title firstnane | astnane email|l postcode
phone check radio)

]

These fields are optional
optional =>[gw (initial title_other)],

)i

The list of required fields plus the list of optional fields akbcover all the fields on our form.
Once we have these fields we can perform some very basic tratican our form:

ny $results = Data::FornVvalidator->check($cgi, \%rofile);

if($results->has_mssing()) {
$t enpl at e- >paranm(nessage => "The following fields are "

"mssing: " . join(" ", $results->mssing());
}
el se {
$t enpl at e- >par an(nmessage => "Everything accounted for!");
}
Exercise

1. You can find a simple validation programviaw cgi - bi n/ dat a_val i dati on. cgi with a
corresponding template irenpl at es/ dat a_val i dati on. ht m . Edit the profile to make theane
andyear fields required. Make thieavouri t e_bi rd andf avourit e_ani mal fields optional.

Dependencies

Sometimes we want to require one field, only if another has ffided out, or has a certain value.
For example, if we provide a limited range of titles (Mr, MKkés, Miss, Dr) we may also add an
"Other, please specify" option. In this case, we’ll want't¢her" box filled in.

Another example is for things like credit cards. If the ctedird number is filled in, then we’ll want
to ensure that the card type, expiry date and card holder aaeaso included, even though filling
in the credit card details itself may be optional.

We can do this by using the dependencies keyword in our piodi:

ny Y%rofile = (
dependenci es => {
If our title is "other", we need the "other"
box filled in.
title => {
other =>["title_other"],
H

ccard_no => [gw ccard_type ccard_exp ccard_nane)],

Perl Training Australia (http://perltraining.com.au/) 57

Chapter 8. Data validation

58

Exercise

1. Edit your profile to make theavouri t e_bi rd field required if the avouri t e_ani mal field is
bi rd.

Constraints

The guts of the profile is in the constraints. Thesengdh: : For nval i dat or how tovalidateour
data. The constraints hash can contain fields that are ndtaned in yourr equi r ed Or opt i onal
hashes. This is handy as it means you can use the same sestbaus (thus keeping them all in
one location) for all of your applications and pass différemui r ed andopt i onal hashes for each

page.
For the most part, our constraints are regular expressions:

my %onstraints = (
firstnane => qr{~[a-zA-Z,.& -] +$},
post code => gr{™Md{4}$},

)

We can also name our constraints, which comes in handy later:

nmy %onstraints = (
firstnane => {
nane => "nane"
constraint => qr{*[a-zA-Z, .& -]+$},
}
post code => gr{"\d{4}$},
)i

Dat a: : For nval i dat or has a number of predefined constraints, which you can read abimg
Dat a: : For nval i dat or : : Const rai nt s. We can refer to these predefined constraints in our profile by
name:

nmy %onstraints = (
firstname => {
nane => "npane"
constraint => qr{*[a-zA-Z, .& -]+$},

}
postcode => qr{"\d{4}$},
enai | = emil’,

)

Finally, we can specify our own constraint rules by passing subroutine reference (more on this
later in this chapter):

my %onstraints = (
firstnane => {
name => "nane"
constraint => qr{"[a-zA-Z,.& -] +$},

}

post code => qr{~\d{4}$},

emai | => "emil’,

phone => \ &val i dat e_phone,

)

and | ater:
sub validate_phone { ... }

Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Data validation

Anything not covered by a constraint rule is assumed to hid vegardless of its value.

Adding constraints to our profile

To add our constraints to a profile, we just pass in a reference

my Y%profile = (

required = [1
opti onal =1 ... 1],
dependenci es => { b,

constraints => \%onstraints,

Checking for validity

Our above example of usingeck only checked whether data was missing. We can also checlkto se
if anything was invalid:

nmy $results = Data::Fornvalidator->check($cgi, \%rofile);

if($results->has_invalid() or $results->has_mssing()) {
$t enpl at e- >paran{ nessage => "There were sone errors.");

}
el se {
$tenpl at e- >paran{ nessage => "All valid! Thankyou.");

}
Dat a: : For nval i dat or provides methods to see which fields were missing or invalid:

foreach ny $field ($results->missing()) {
print "$field was required but is mssing.";

}

foreach my $field ($results->invalid()) {
print "$field has been given an invalid value.";

}

Exercises

1. Write constraints for each field in your form.
2. Test your form by submitting valid and invalid data. Chétkt you get the results you expect.

3. Add a constraint name to yoysar field and a corresponding message.

More complex validation

Regular expressions are a great for simple validation, Iatt\f we want to perform other
transformations on that data? For example, Australiapkelee numbers may start with the country
code (61 -- usually preceded by a plus) and a single digitemda. Alternately they may start with a
two digit area code, possibly in parentheses. They may hayeinctuation at all, or they may
contain spaces or dashes separating the digits.

Perl Training Australia (http://perltraining.com.au/) 59

Chapter 8. Data validation

60

Writing a regular expression to match all of these option Easy. Wouldn't it be easier to get
access to the data, strip out all the extra formatting thaplediike to add, and then use a regular
expression to verify the numbers themselves? That's theddfithing we might want to put into a
subroutine.

Dat a: : For mval i dat or allows us to specify subroutines instead of regular exmasss our
constraints. These subroutines are called in scalar coaweishould return the data if valid, or
nothing if invalid. Zero values are treated correctly.

We can provide subroutines for our data validation in two svahe first is to provide an anonymous
subroutine:

nmy %onstraints = (
phone => sub {
ny ($val) = @;

ny ($match) = ($val =~ /A([\d +()-]1+)%/);
return $match;

)

The above example does not fulfil all of our requirements deéis not count the number of digits,
nor does it strip out additional punctuation. In order to lat e need a longer subroutine, and
rather than clutter our constraints hash we can use a reftersubroutine defined elsewhere in our
file:

my %onstraints = (
i)h;)ne => \ &val i dat e_phone,
)
and |ater:
This only does Australian-style phone validation

sub val i dat e_phone {
ny ($phone) = @;

Renobve spaces, parentheses and dashes
$phone =~ tr{ ()-}{}d;

+61 shoul d have nine digits after it.

if ($phone =~ m{~ \+61 (\d{9}) $}x) {
Return O-prefixed form w thout country code.
return "0$1";

} elsif ($phone =~ m{~ (0 \d{9}) $}x) {

return $1;
}
|f we reach here then our phone nunber wasn’t
valid.
return;

C When we provide a reference to an existing subroutine, we must not include parentheses.
Writing the following:

Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Data validation

\ &val i dat e_phone() # oops

calls the subroutine and takes a reference to the return value.

Exercises

1. Change the constraint on yowar field such that it must specify a leap year. Use a subroutine
constraint to test this.

(Hint: A leap year is a year which is divisible by 4, but not 301 unless it is also divisible by
400.)

2. Test your form by submitting valid and invalid data. Chétkt you get the results you expect.

Error messages

Sometimes it would be useful if we could provide more infotioathan just the fact that the field is
invalid. For example, we might want to tell the user what teéfis allowed to contain so that they
can spot what's wrong.

We can do this by mapping our constraint names (as mentidmacegto messages.

nmy %sgs = (
constraints => {
name => gq{ Nanmes nmay only contain letters
in the al phabet, commas, dots
anmper sands, spaces and hyphens
H
postcode => q{ Please enter an Australian
post code of exactly four digits.
}
}
)i
ny Y%rofile = (
required =1 ... 1],
opti onal =1 ... 1],
dependencies => { ... },
constraints => \%onstraints
nsgs => \ %rsgs

)

Like the constraints, we can store messages in the messagfeshat don't refer to values in the
requi red Oropt i onal lists. This allows us to store consistent messages for alotonstraints
across all of our applications, in one place.

We can also specify other information with our messages, such as custom error prefixes,

the default missing and invalid messages and formatting string. Read the documentation
(http://search.cpan.org/dist/Data-FormValidator/lib/Data/FormValidator.pm) for more information.

Perl Training Australia (http://perltraining.com.au/) 61

Chapter 8. Data validation

Using our error messages

We can access the messages that we've entered by callinrgdgdte method on our results object. It
returns a hash of field name, message pairs such as:

firstnane => '* M ssing’

These messages are designed to appear next to the form &dehenrefer to.

So how can we get those messages next to their form elemeets2Wy're not form data, so
HTM.: : Fi | | I nFor mcan’t work its magic here for us. We’'ll have to add templatgstaVe could go
forth and add them in ourselves, but this would add a lot atefuo our HTML and distract from
our form layout. Alternatively, we could use a Perl moduleeait for us:

use Dat a:: Fornval i dat or;
use Data::FornValidator::Util::HTM. gwm add_error_t okens);

Add the error tags for HTM.:: Tenpl ate
ny $tenpl = add_error_tokens(

ht m => "exanple.htm",

prefix => "err_",

)

Use the above tenplate to create our tenplate object
nmy $tenplate = HIM.:: Tenpl at e- >new(scal arref => \$tenpl);

Do validation and then check results
nmy $results = Data::Fornvalidator->check($cgi, \%rofile);

if($results->has_invalid() or $results->has _mssing()) {
$t enpl at e- >par an(nessage => "There were sonme errors");
$t enpl at e- >paran{ $resul ts->nsgs());

}

el se {
$t enpl at e- >paran{nmessage => "All valid! Thankyou.");

}

Dat a: : Formval i dator:: Util:: HTM takes the HTML provided to it and adégm.: : Tenpl at e tags
to each of the form fields. These are named according to ttie ppeecified in the

add_error_t okens function. Thus in our case they’ll be calledr _title,err_firstname and so
on.

We can specify a prefix for each of our error messagestia: : For nval i dat or by adding the
prefi x key to thensgs hash:

nmy %sgs = (
prefix = "err_",
constraints => {
name => g{ Nanes may only contain letters in the
al phabet, commas, dots, anpersands,
spaces and hyphens.

b

C The above approach of using Dat a: : For nval i dat or: : Uti | : : HTM. only works if you are not
generating any form elements with ca . pmand plugging them in via HTM_: : Tenpl at e or another
templating tool. If you are generating form elements this way (as described in the previous

62 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Data validation

chapter) then Dat a: : Fornval i dator:: Uti | : : HTM. will not see them and thus will not be able to
generate the message tags for you. Of course you can always generate them yourself.

Exercises

1. Add messages for your year and favourite bird constraffots will need to add names to your
constraints in your constraints hash.

2. Test your form by submitting valid and invalid data. Chétkt you get the results you expect.

3. Add a constraint name to yousar field with a corresponding message.

Validation and tainting

Most validation withbat a: : For mval i dat or is done using regular expressions. If we write these
regular expressions carefully then we can be certain tleatetbulting data is not only valid, but that
it can also be safely untainted. To make this eBsya: : For nval i dat or will untaint valid values for
us if requested.

We can mark particular fields to be untainted by usinguthi@i nt _constrai nt _fi el ds parameter:
my Y%profile = (

untaint_constraint_fields => ['year’, 'bird],

)

After this, values returned by thel i d method are untainted for the specified fields. All other data
will remain tainted.

Exercise

1. Enable untainting for your profile:
ny Y%profile = (

untaint_constraint_fields =>['year’, 'bird],

)i
Use the following code to test your valid values for taintesi
use Scalar:: Uil gwtainted);

foreach ny $field ($results->valid()) {
if(tainted($results->valid($field))) {
print "<p>$field is still tainted</p>"
} else {
print "<p>$field is not tainted</p>";
}
}

Be carefull$resul ts->val i d($field) will return an array reference, if there was more than
one value for that field name.

Perl Training Australia (http://perltraining.com.au/) 63

Chapter 8. Data validation

Validation code and modules

Many of your programs will have identical constraints onfikeé&ls of the same names. It’s often a
good idea to place your constraints, messages, and depsesiario a module where they can be
easily accessed. This means that each program that neesisdmpvalidation need only provide its
list of required and optional fields to work.

Chapter Summary

« Client side data validation should never be relied on.
« Ad hoc data validation is difficult, time consuming and efpoone.

« Data:: Fornval i dat or provides us with a very straight forward method of validgtiur form
fields.

« We can us@at a: : Fornval i dator:: Uil :: HTM.to generaterM.: : Tenpl at e fields in our HTML
to contain error messages.

« Data::Fornval i dat or allows us to use our validation expressions to untaint ota.da

64 Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Cookies and sessions

In this chapter...

Unlike traditional applications such as word processalkudators and flight simulators, CGI
programs are not inherently stateful. This means that esgnest from a client is treated as an
entirely new conversation with effectively no referencany previous conversation. For static
HTML this stateless situation causes no problem. The selves not care whether the browser
requesting page 3 has previously seen pages 1 and 2.

Dynamic websites, on the other hand, do care about stateulidvbe terrible if there was only a
single "shopping cart" used by all clients currently tagkio the server. It would be impossible to
order just the things you wanted, yet alone correctly hapdienent and shipping for just your
share!

We could try and identify each machine by its IP address, battd the presence of proxies, network
address translation, and dynamic address assignmenis thigly a workable solution.

Fortunately, there’s a fairly simple solution. HTTP coakie

What are cookies?

A cookie is a message given to a web browser by a web servebrbaeser stores this information
and passes it back to that server each time it requests a page.

The main purpose of cookies is to associate information avgpecific browser. The server can then
use this information when making choices such as how to gémand serve content. For example, a
cookie may record a user’s preference in how they want pdatielements laid out on the screen.

Uses for cookies

Cookies can be used for all sorts of things. They can be useelpogauge how many unique visitors
a site has, and how often those visitors are returning. Theye used to track a user's movements
throughout your website, or to save a user’s page prefesesgmi-anonymously. Cookies are used

to store session information for shopping carts and othetrsiated data.

Cookies might be used to ensure download agreements areafieanvisitors tobookmarkthe page
of the article they are reading, and to generate bread-tonthow the user where else on the site
they've been. They can also be used to highlight new contece she user’s last visit.

The use of cookies for some of these things is quite contsisleMost people are happy for their
use for shopping carts, but unhappy about search engines esokies to collate their search terms,
or for marketing firms to use them for targeted advertising.

Naming cookies

Each cookie is a simple name/value pair, alidhe information in a cookie is visible to any user
who wishes to check it. Some browsers can be configured tdhagskser if they wish to accept a
particular cookie, and the name of the cookie may influeneg trecision.

Perl Training Australia (http://perltraining.com.au/) 65

Chapter 9. Cookies and sessions

It is suggested that you give cookies straightforward arsgf émunderstand names. If your cookie
records a user’s preferred style, then cadtigl e orpreferred_styl e. This is both friendlier to your
users, and can make your application easier to debug.

Cookie Security

Like all information sent from the web-browser, the useinuéttely hasabsolute controbver the
cookies stored on their machine and transmitted to youiieagfmn. All cookies should be regarded
as user-input, and should be carefully checked and vatidagéore use.

Before using a cookie for any purpose, you should ask ydusdwdther your application would
break or could be subverted if the cookie’s value was changeauld be averybad idea to have a
cookie that recorded if the current user had administraiixéleges; a clever user could simply set
this cookie and bypass your access controls.

Later in this chapter we will discuss how you can use cookiesferencanformation in a secure
fashion, without revealing that information to the usemtiselves. This is useful for tracking logins,
privileges, and other information that the user should roalble to see or edit directly.

It should also be noted that cookies are sent to the serveewdry requestincluding for images,
javascript files, cascading style sheets, and other canfeatshould avoid storing large amounts of
information in cookies as they can provide a significant loadboth your server and your clients.
Browsers are not required to accept cookies of more than B9@8, or more than 20 cookies per
domain.

You should also remember that some browsers may not suppakies, or may have them disabled.
You should always test that your web application providesrestble response if cookies are not
enabled, and does not get stuck in an endless redirect dagliap unexpected error message.

Generating cookies with CGl::Cookie

66

Perl comes with a standard module calted: : cooki e that allows cookies to be both accessed and
generated. Perl'sa . pmmodule usesa : : Cooki e internally for cookie management. In this course
we will be discussing how to uses : : Cooki e directly, as it is useful in many circumstances when
C4 . pmis not used.

Cd : : Cooki e allows you to control all aspects a cookie. A complete exaigpshown below,
although it should be noted that most arguments are optiasat : : Cooki e provides sensible
defaults. We'll discuss each option as we progress thrauiglthapter.

use CQ :: Cooki e;

ny $cookie = CA :: Cooki e- >new
- nane => ’'favourite_col our’,
-val ue => bl ue’,
-expires => ' +1d',
-domain =>"'.perltraining.comau’,
-path ="'/
-secure => 0,

)

Once we have a cookie, we can send it to the browser. Cookje=aaps part of the HTTP header.
When usingca . pmwe can provide an argument to theader function:

Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Cookies and sessions
print CA ->header (-cooki e => $cooki e);

Multiple cookies can be sent by passing an array reference:

print Cd ->header (-cookie => [$cooki el, $cookie2, $cookie3]);

The arguments that can be passedda : cooki e are as follows:

name

Each cookie sent to a client should be given a name whichesetatits purpose. For example
sessi on_i d, pref er ences Of br eadcr unbs. Sending a cookie with the same name as an
existing cookie (for the same site) willerwritethat cookie. In this way cookies can be
updated or deleted.

value

Cookies can be thought of as key/value pairs. The value oway information we want to
store in the cookie, which may be preferences, a session thestontents of a shopping cart,
or other useful information.

CG : : Cooki e supports the setting gimplescalars, array references, and hash references using
theval ue parameter:
my Y%prefs = (

si ze => 'big’,

colour =>'red,

texture => 'shiny’,

)

ny $cookie = CG :: Cooki e- >new
- name => ’'preferences’,
-value => \%refs,
)
For more complex data structures it is necessapet@lisethe structure into a string first. We
can use Perl’s built-ist or abl e module for this purpose:

use Storable gwfreeze);

ny $cookie = CA :: Cooki e- >new
- name => 'preferences’,
-value => freeze(\%refs),

)i
expires

Without an expiration timega : : Cooki e creates a cookie that lasts until the end of the current
session. In almost all circumstances, the session endstivberser closes their browser,
although users can always expire cookies early if they wish.

Expiration dates are usually set relative to the currengtifor example, a cookie may expire
"one hour from now", or "one day from now". The following foatrtypes may be used:

+10s 10 seconds from now

+10m 10 minutes from now

+10h 10 hours from now

+10d 10 days from now

+10M 10 nmont hs from now

+10y 10 years from now

now ri ght now

-1y one year ago (already expired)

Perl Training Australia (http://perltraining.com.au/) 67

Chapter 9. Cookies and sessions

Setting an expiry date in the past is the standard way to faxokie to be removed from the
browser.

It's polite to not use overly long expiry times on your coakigithout a good reason. If your
cookie is to help record registrations for an event that gpleaiing in a month’s time, then
there’s little reason to keep your cookie for longer than.tigour cookie’s purpose is a
long-term "remember me" function, then it may be sensibkeetdt to last for years.

A useful trick with cookies is to set a relatively short expiime (eg, "+10m"), but to send the
cookie on each request. This means that the cookie will exgfter 10 minutes of inactivity
from the client, which can be useful if you want a simple inatt logout for your application.
Unfortunately such cookies will persist (during the alltachtimeframe) even if the browser is
closed and re-opened, which may not be desirable for youicapipn. Our chapter on session
management covers this concept in more depth.

domain

The partial or complete domain for which your cookie is valitie client will pass the cookie
to any host which matches this domain. For example spegdfgidomain of

. perl traini ng. com au Will ensure that the cookie is passed to servers on

wwwy. per | trai ni ng. com au, exanpl e. perl trai ni ng. com au and

testing. perltraining.com au.

If we only wished to pass cookiestesti ng. perl traini ng. com au we could provide that
instead as our domain. By default, the domain is set to the s@mver the cookie originated
from. You can't set cookies for a domain of which you are noteamber.

Like the domain, this allows us to restrict the file systenhpatr cookies are passed to. Thus a
path of/ cgi - bi n/ user/ would ensure the cookie was passeddgi - bi n/ user/ order . pl but

not to/ cgi - bi n/ adni n/ del et e_or der . pl . By default the path is set towhich will cause the
cookie to be sent with all requests to your server.

"secure" flag

If the secure flag is set, the cookie will only be sent over secannections using tHetps
protocol. You should keep in mind that theercan still read the cookie from their browser, and
the cookie may still be stored on their disk in an unencryfoechat.

Fetching cookies

68

ny %ooki es
ny $cooki e_hashr ef

To get the cookie’s sent by the browser, we use theh method provided bya : : Cooki e, which
can be called in either a list context (returning a hash),sradar content (returning a reference to a
hash):

CQ : : Cooki e->fetch;
CQ : : Cooki e->f et ch;

Each cookie in our hash is a fully-formed : : cooki e object, howeveonly thename andval ue
attributes are meaningful; all other attributes are seédir default values.

Usingf et ch always returnsll the cookies available. Once you have the cookie hash, you can
retrieve an individual cookie from it:

Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Cookies and sessions

ny $pref_cooki e = $cooki es{preferences};

ny $preferences;
if ($pref_cookie) {
$preferences = $pref_cooki e->val ue;

}

What we would really like is just the cookie. We can @se. pnis cooki e method to automatically
fetch a cookie’s value (if it exists).

my $preferences = $cgi - >cooki e(’ preferences’);

If our value had previously been frozen with ther abl e module, we’ll also need to thaw it:
use Storable (thaw);

ny $t hawed_pref erences = t haw($pref erences);

We can also get a list of all our cookie names, which can be teskeap through all our cookies in
turn:

ny @ookie_|list = $cgi->cookie();

foreach ny $cookie_nane (@ookie_ list) {
Do sonething with $cooki e_nane

}

Exercises

1. Theww cgi - bi n/ set _cooki e. cgi program will emit a simple cookie to your browser.
Navigate there now, as having a cookie already set will hétlp thie later exercises.

2. Thewww cgi - bi n/ cooki e. cgi program contains some skeleton code. Update it to retriéige a
of all cookies and display their names.

3. Update the code to also display the cookies’ values.

4. Update the code to allow the user to set cookies based hpdietds provided. Test that this
works.

Sessions

Cookies are a useful feature, allowing information to betkeghe browser itself, rather than being
cumbersomely passed from page to page. However it's nobwuttits flaws. Cookies can be
modified by the user, making data integrity difficult, andytlaee inefficient when storing anything
besides from small strings of data.

One way of keeping much of the usefulness of cookies but wittiee disadvantages is the concept
of usingsessionsPut simply, asession kegr session hasls generated and given to the client as a
cookie. On the server-side, a record is kept of that key aad #ta associated with it. This keeps the
cookies small, our data secret, and makes it easy to veriéthven or not our cookie is valid.

A good session cookie has two important properties. It shbalunique for every session, and it
should be randomly generated. The requirement for unicggeiseo make it possible to identify
each individual session, but why the requirement that sessiokies should be random?

Perl Training Australia (http://perltraining.com.au/) 69

Chapter 9. Cookies and sessions

The reason is simple. If session cookies contained prddétaformation, then it may be possible
for an attacker to impersonate another user’'s session.|Bgtsey random values from a large
address space (eg, a 128 or 512 bit digest) the odds of akextteessing a session key is
vanishingly small. Further security can be added by bindisgssion key to a particular IP address
or other browser characteristics.

It's possible to use sessions without cookies, but doing so involves passing session information
with every link and form submission. This can be a challenging task, especially for a website that
mixes both static and dynamic content and is beyond the scope of this course.

CGl::Session

Thecd : : sessi on module is available from the Comprehensive Perl Archivendek (CPAN), and
provides an automated way to manage sessions. It providghlg bonfigurable way of storing
session information, and can be used in conjunction adgth pmor with other technologies.

Getting started withta : : Sessi on is easy:

use CG3 ;
use CQ:: Session;

Create our new session
ny $session = CA:: Sessi on->new,

Send our headers (including session cookie)
print $session->header();

There’s a lot happening behind the scenes with our code abovet’s take some time to examine
what happens in detail.

When we create @G : : Sessi on object it automatically checks the cookies that were serhby
browser. If it finds one namedt SESSI Dthen it uses that as our session key. If it doesn’t find any
such cookie, then it generates a session key.

Calling $sessi on- >header () prints our standard HTTP headers, but also includes thésess
cookie. We can pass any argumentsdessi on- >header () that we could pass tod . pms own
header function.

Once we have our session established, we ca@se Sessi on’s par ammethod. This works exactly
like the method of the same name fraa . pm except that instead of getting and setting parameters
passed from the client, it gets and sets parameters in oairdession storage area (on our server).

As an example, let's say that our user had successfully bhggeand we wanted to store that

information:
$sessi on- >par an(’ user nane’ , "alice');
$sessi on->paran(’ fav_colour’, 'blue);

We can retrieve these details later, provided it's durirgghme session. It could be in a different
script, or a different instance of the same script:

ny $nane = $sessi on->paran(’ usernane’);
ny $col our = $session->paran(’fav_colour’);

70 Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Cookies and sessions

C The above code assumes that we're using a version 4 of ca : : Sessi on, earlier versions required
three arguments be passed into new to specify the data source name, session id and options.

ny $session = C3 :: Session->newundef, undef, {Directory=>/tnp’'});

See the documentation for what your version requires.

Saving submissions

A very common use of sessions is to store information subrhjiteviously by the user. For
example, we may wish to remember the user’s favourite cdlmater use. Unfortunately doing
this results in a rather lengthy and somewhat repetitiveedihcode:

$sessi on->paran('fav_col our’, $cgi->paran(’fav_colour’));
Fortunatelyca : : Sessi on provides a way to automate this process:

$sessi on- >save_param $cgi, ['fav_colour’]);

We can even store many parameters at once in this way:

$sessi on->save_param $cgi, [gw(fav_col our tinezone usernane)]);
Without a second argumeall parameters are stored:

$sessi on- >save_paran($cgi);

If we need to ensure that the parameters are saved to diskdiately, we can calll ush. Most of
the time this isn’'t necessary as the session object shollldieah itself when the variable goes out
of scope.

$sessi on->fl ush();

@ While it's certainly convenient to copy all form parameters to our session, it may not be very
wise. Remember that the user can submit any parameters they like, and set them to any value
they want. Blindly copying parameters into our session may overwrite or set parameters that we
hadn’t intended. In almost all cases it's much better to explicitly list the parameters we want
saved.

Clearing session data
Clearing entries in our session is very straightforward:

$sessi on->clear('fav_colour’);
$sessi on->clear([gwfav_col our fav_novie)]);

$sessi on->cl ear (); # Careful! Clears entire session

Perl Training Australia (http://perltraining.com.au/) 71

Chapter 9. Cookies and sessions

72

Deleting sessions

If you know a session isn’t going to be used anymore (usua@bahse the user has 'logged out’),
you can delete it:

$sessi on->del ete() ;

This permanently removes the session from the store, tkeis dot delete the cookie.

Exercises

1. Write a script which creates a session and run it. Verif flou receive a cookie from it named
CG SESSI D.

2. Create a HTML form which asks for name, age, street naméaaodrite colour. Submit this
form to your script and store the submitted values in yousises

3. Print out the current values of the session before chartbem to those from the new
submission.

Session expiry

CG : : Sessi on supports the concept of session expiry. If a session goesdertain period of time
without being used, then it's considerst@leand will be cleaned up the next time we try to access it.
This is useful for applications where we want the user to lieraatically logged-out after a certain
amount of inactivity. It's also a way to avoid accumulatimgsions which never get cleaned up.

To set the expiry on our session, we can calldhg r e method:

$sessi on->expire(’ +1h’); # Expires in 1 idle hour

Our code above doewtsay that the session expires in an hour. It expires aftéoan of inactivity
The session itself could last for years provided that the meeer spends longer than one hour
between accesses.

It's also possible to cancel a session expiration, meatiagit will never expire.
$sessi on->expire(0);

One of the nicest features 08 : : Sessi on is that it's possible tselectivelyexpire certain pieces of
information. For example, we may want a parametgfrent _aut h to expire after only five minutes
of inactivity:

$sessi on->expi re(’ paynent _auth’,’ +5nm);

All parameters that aren’t explicitly tagged will expirettvihe rest of the session.

When a session expires, all the parameters it holds are cleared. This means that setting a
per-parameter expiry time longer than the session-expiry time effectively does nothing; the
parameter will expire with the session, along with everything else.

It is not an error to set a parameter-specific expiry that's longer than the session expiry. An
example of where this may be useful is when we want to limit a parameter’s lifespan, but don’t
want to care if our sessions are short-lived, or longer-lived "remember me" sessions.

Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Cookies and sessions

To expire an session immediately, use $sessi on- >del et e. TO expire a parameter immediately,

use $sessi on->cl ear (' nane’).

Session storage

Unless configured otherwised : : Sessi on stores its sessions in files on the disk, inside your
operating system'’s designated temporary directory.

Storing sessions as files works everywhere, but it may ndidédst solution for your application. If
you're dealing with a large number of sessions, then stdhieg as individual files can get rather
inefficient. In addition, there are housekeeping issueswity to clean them up.

To learn how to set cd : : Sessi on to work with databases, read the documentation from

perldoc CGl::Session or at http://search.cpan.org/dist/CGl-Session/lib/CGl/Session.pm.

Housekeeping

Cd : : Sessi on will automatically clean up expired sessions when they asgluHowever when a
session expires, there’s a good chance it méWerbe used again; the user has closed their browser,
or gone on to do other things. This can result in an accunanati expired sessions in storage,
which take up space but which will never be touched again.

CG : : Sessi on could try to do housekeeping every time it's called, but thatild involve searching
through all of our stored sessions and cleaning them upsTiatt very efficient if your program is
being run 100 times a second, and every single process igisgeconsiderable time repeating the
same work.

To avoid both of these problemss : : Sessi on has separate housekeeping functionality. Now we
can do our housekeeping at scheduled intervals (for examdey hour), and with a minimum of
impact to client queries.

The housekeeping provided log : : Sessi on is invoked by using itsi nd class method. This walks
through all the sessions, and executes code for each. Atdkebmasic level, we can clean all our
expired sessions using:

C4d :: Session->find(sub {});
That code walks through all our sessions and daekingwhen it encounters each one, so how does

it help? Well, before our subroutine is callex : : Sessi on loads the session, and if it's expired, it
removes it. So just by getting : : Sessi on to examine everything, we get what we need.

We can also use this functionality to gain information akamitive sessions, or to even change them!
The subroutine passeditond receives a fully-formeda : : Sessi on object each time it is called. So
if we wanted to flag all our currently logged-in users for aprdraw, we could do something similar
to the following:

CG ::Session->find(\&prize_draw);

sub prize_draw {

Perl Training Australia (http://perltraining.com.au/) 73

Chapter 9. Cookies and sessions

ny ($session) = @;

Skip expired sessions
next if $session->is_enpty;

Set prize-draw flag
$sessi on->paran(’ prize_draw , 1);

Make sure our changes are flushed to storage.
$sessi on->f | ush;

}

If you're using a store other than the default disk store §@lgo need to telf i nd where to locate it.
Cd : : Sessi on’s documentation provides further information on how to kiig.t

@ As of ca : : Sessi on 4.14, the fi nd functionality is considered experimental. It is mentioned in
these notes because it is extremely useful for housekeeping purposes, but you are strongly
recommended to read the documentation for your installed ca : : Sessi on module in case the
syntax or semantics have changed.

Sessions and HTML:: Template

CG : : Sessi on Works very nicely withHTM.: : Tenpl at e. Because our session objects hayaraam
method, we can associate them with a template and have figioatically filled based upon our
session information. The following code fills a templatehwitformation stored in our session, and
then sends the filled template to the user:

ny $session Cd : : Sessi on- >new,

ny $tenplate = HTM.: : Tenpl at e- >new(
filename => "exanple.tnpl",
associ ate => $session,

)

print $session->header;
print $tenpl ate->out put;

Exercise

1. Create aiTM_: : Tenpl at e with tags for the name, age, street name and favourite céioor
your previous script. Use the session object to fill theseasln for each submission.

Chapter summary

« Cookies are small pieces of information given to the cligntite server. These cookies are
returned to the server with each request, allowing some Btdrmation to be kept.

74 Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Cookies and sessions

Users can edit their cookies, thus it is important to ensueeimportant data is verified.
We can create cookies usikag : : Cooki e.

Sessions are created by giving clients unique ids and tleimgtrelevant information for that id
on the server.

Cd : : Sessi on allows us to create, work with and expire sessions.

If desired, we can associa®M. : : Tenpl at e Objects withcd : : Sessi on objects like we can with
CG . pmobjects.

Perl Training Australia (http://perltraining.com.au/) 75

Chapter 9. Cookies and sessions

76 Perl Training Australia (http://perltraining.com.au/)

Chapter 10. Introduction to HTML::Mason

In this chapter...

In this chapter we’ll introduce you to a powerful and integchapproach to web development.
HTM.: : Mason provides a logical, high-level interface to web developtmeaking dynamic and
semi-dynamic websites quick and easy to build.

Problems with classical CGI

There is a lot that can be done with classical CGI. Partitutarce you start using some of the
excellent helper modules sucht®i: : Tenpl at e. HTM.: : Fi | | | nFor mandDat a: : For nVal i dat or .
However CGI still has a number of significant drawbacks.

CGl scripts typically map one HTML page per CGI program. Naegleof those pages may have
many logical parts: headers, footers, bread-crumbs, alséaix, navigation, and actual content.
This means that every CGI program ends up doing a lot of extr& {generating these other page
parts) before it can do it’s real task. Even if we put this gatien into subroutines, we still need to
make sure that each subroutine is called.

This lack of conceptual division of page elements, meansstyery CGIl program is generating each
page part, and must therefore handle the data for each teniplne hierarchy. This leads to
duplication across both code and templates. It also cantteadssive code rework when another
page element is created.

This penalty for small changes often leads to CGI scriptsifabehind the main website when
look-and-feel changes occur. Even when they don't, dueddlifficulty for non-programmers to
understand CGl scripts, the programmers are constanthdaskmake minor adjustments to ensure
the pages look "just right".

Finally CGI scripts are often hosted on a separate (CGldedapart of the web server. This means
that making a website more dynamic may mean moving all otdt agi-land, even when the only
desire is to integrate something simple, such as a stoakirep

Due to these reasons and more, there have been a number ofenmnts and CGI replacements.
In this second half of this course, we’ll ook at one replaeatcalled HTML::Mason.

What is Mason?

Mason is a free, open-source, cross-platform web developem¥ironment, written in and
supported by the Perl programming language. Mason’s beatarfes can be used without any Perl
knowledge as well, but to use Mason at full-strength an wtdading of Perl is essential.

Mason'’s preferred environment is running under mod_psitimthe Apache web-server, where it
makes use of numerous optimisations to enhance performislias®n can also be configured to run
under other environments (including II1S), operate as adstahCommon Gateway Interface (CGI)
program, or work in a non-web environment entirely.

For information on how to setup and administer Mason read Appendix A.

Perl Training Australia (http://perltraining.com.au/) 77

Chapter 10. Introduction to HTML::Mason

Mason vs traditional CGI

Traditional CGI programs are code with embedded HTML. Indjpmgrams the HTML is
abstracted into templates and external files, but prograowion still fundamentally follows the
code which then decides what HTML to generate.

Mason takes this model and flips it over. Mason sites congIlsT®IL that may contain embedded
code. This means that a Mason file layout often exactly mérioe site layout, which can make
management significantly easier. Indeed, converting & statbsite to a Mason website is often a
very straightforward process.

When Mason is used, it is normally enabled &dirdirectories, or all files with aht M extension.
This is the reverse of traditional CGI programs that are lsganfined to a single directory.

A sample page
Unless otherwise designated, Mason pages are plain HTML:

<htm >
<head>
<title>Wy First Mason Page</title>
</ head>
<body>
<p>This is ny first Mason page. </ p>

<l-- This following line displays the result of a calculation. -->
<p>2 +2 =<%2 + 2 % </p>

</ body>
</htm >

Of particular interest to us is the snippet containing tlgstas 2 + 2 %. The speciak % tags
indicate that a Perl expression should be evaluated, angsiét placed into the page at this point.
This is commonly used to substitute variables, for exaragléo <% $nane % .

Component Basics

78

Mason'’s basic unit is a component. This is a piece of HTML siidg including Perl code, which
generates a page or part of a page. In many cases you will im@eomponent per page, but in other
cases you may choose to call multiple components which eacérgte a small part of the final page.

An example component could be as simple as:

<p>Hel | o Worl d! </ p>

without any code at all. Of course, our components can alstagoPerl code. We've already the
uses ok expr % to evaluate and display the results of an expression, buewalso embed
regular Perl code as well:

%ny @riends
% ny $random friend

gw(Paul Jacinta Damian Kirrily)
$friends[rand @riends];

<p><% $random friend % says "Hello World!"</p>

Perl Training Australia (http://perltraining.com.au/)

Chapter 10. Introduction to HTML::Mason

In the code above, a line beginning with a percent charaztéel{s Mason to interpret that as a full
line of code. Thesmustappear as the first character on the line, in all other looatits considered
just another character.

If we have a lot of Perl that we want to execute, we can use dalpeper | > block:

<Uperl >

my @riends = gW Paul Jacinta Damian Kirrily);
nmy $random friend = $friends[rand @riends];

</ Y%perl| >

<p><% $random friend % says "Hello World!"</p>

We can freely intermix Perl and HTML, which is especially fugén looping constructs and other
areas of HTML generation:

<Uperl >

my @riends = gW Paul Jacinta Damian Kirrily);
nmy $random friend = $friends[rand @riends];

</ Y%perl| >

<p>My friends include: </ p>

% foreach ny $friend (@riends) {
<%%$friend %</I1i>

% }

</ ul >

<p><% $random friend % says "Hello World!"</p>

Exercises

1. You can find the above codeimw f ri ends. ht i . Update the list with your own friends, and
verify the generated HTML code changes accordingly.

2. Modify your code to also display the number of friends yaueén (Hint: You can find the size an
array withny $num friends = @ri ends).

Calling components

One of Mason’s great strengths is that it's possible to aathgonents from other components. In
this way we can create reusable snippets of code and HTMlc#mbe embedded into multiple
locations. We can consider Mason components to be similgetts subroutines.

An example of a commonly used component is that of site néivigalVe can write a component
callednavi gati on. mht m , which may just contain static HTML:

<ul id="navigation">

Home</1i>

Speci al s</1i>
Fun and Ganmes
Contact Us
</ ul >

We can now include this component to provide navigation arpages:

Perl Training Australia (http://perltraining.com.au/) 79

Chapter 10. Introduction to HTML::Mason

80

<htm >

<head><titl e>My Exanpl e Page</titl e></head>
<body>

<l-- Here's our navigation -->

<& navigation. mhtm &

<l-- Here's our content -->

<p>Wel come to ny exanpl e page! </ p>

</ body>

</htm >

The<& navigation. nht M &> tag calls the specified component and includes its contemcal
call our components anything we want; our component cowdtigs easily be namedv. nht m if
we wanted a shorter filename.

&
Components in other directories can be called by prepending the path:

<& ../shared/todays_weat her. mhtm &>

The component root

All Mason components must live inside a directory hierardthe top level of this hierarchy is
known asthe component roott is impossible to access components that live outsidedhgonent
root. This provides an extra level of security (arbitrarggicannot be executed), and also allows
Mason to perform a number of optimisations.

When Mason receives a request, it maps the request ontodhgstiem by adding the component
root to the start of the path. For example, a requestdar ckens/ dor ki ngt on. ht i and a
component root ofvar / www my- mason/ would result in Mason looking for a file with an absolute
path of/ var / ww my- mason/ chi ckens/ dor ki ngt on. ht i .

Filename conventions

When working with Mason, it is common to use a humber of filea@onventions. These have the
advantage of making it easier for developers to quicklymheitge the use of a component, and also
allowing rules to be specify to the web-server regardingsérging of content.

Throughout these notes we will use the following filenameveoitions, which we also suggest for
your development and production sites:

.html

Either plain HTML, or aHTM.: : Mason file designed to be rendered to a browser. These may be
referred to asop-level componentas they often contain an aggregation of smaller components

to do their work.

.mhtml

A Mason component that produces HTML output, but which idgiesd to be called from
another component, rather than displaying directly to avesy. Examples include navigation
bars, weather displays, shopping cart summaries, and athgoonents that may be included in
a larger page.

Perl Training Australia (http://perltraining.com.au/)

Chapter 10. Introduction to HTML::Mason

.mpl

A mason component that produces no HTML output, but insteafbpms calculations and/or
returns information to the calling component. In generapnefer the use of Perl modules to
perform these tasks, but it may be appropriate under sormensgtances to have Mason
components that fulfil a similar role.

.CQi
A traditional CGl script.

Exercises

1. We've already written aavi gat i on. nht ni file for you. Edit your existingri ends. ht m to call
the navigation component.

Chapter Summary

Mason is a web development environment written in Perl.
« Mason'’s basic unit is the component.
. Components represent a logical part of a website.

« Components can call other components to build up a full page.

Perl Training Australia (http://perltraining.com.au/) 81

Chapter 10. Introduction to HTML::Mason

82 Perl Training Australia (http://perltraining.com.au/)

Chapter 11. Component Arguments

In this chapter...

We've examined some of Mason'’s basic features for generdiinamic content, and the basic use
of components to build more sophisticated pages. Howevas nbour pages accept form
submissions, and none of our components take any argunrettigs chapter we’ll cover Mason’s
argument handling features.

Form processing

Mason has a very straightforward way of processing argusriterforms. Any component can have a
<var gs> block, which specifies what arguments may be passed to thre fat's see a simple
example:

<%ar gs>
$name => ""
</ %ar gs>

%if ($name) {
<p>Hel | 0 <% $name %</ b></p>
%}

<f orm net hod="post" >

Your namne:

<input type="text" nane="nane" />
<i nput type="submt" />

</form

In our component above, we accept a single scalar arguneaind, which has a default value of the
empty string. When our form is submitted (by default backi®$ame page), thengihame contains
a true value we display a bold message greeting that person.

Variables declared inside amar gs> block are lexically scoped (using) for the entire component,
and are automatically populated using form-submissioialies of the same name. Thaar gs>
block can appear anywhere in the component. It's not uncomfiorsvar gs> to appear after the
HTML in a component, which can make it easier when the HTML igten by non-programmers.

We can specify many arguments if required, and they needlnwdze defaults. It's also possible
embed blank lines and comments irt@r gs> blocks. The following block provides a default
$nane, but requires that botkage andsaddr ess be passed:

<%ar gs>

While our users may not give their name, we
require their name and address.

$nane => "anonynous" # optional field
$age # required field
$addr ess # required field
</ Y%ar gs>

Perl Training Australia (http://perltraining.com.au/) 83

Chapter 11. Component Arguments

C Mason considers it a fatal error if an argument without a default is not supplied. It is highly
recommended that any component wishing to use submitted form inputs supplies defaults to all
of its arguments. You can and should always provide your own argument validation code.

Multiple form values

It's very common for forms to have multiple elements with s#a@ne name. For example, the
following provides a list of favourite colours that the usan select. The resulting form input may
have no colours selected, all of them selected, or anythibgiween.

<p>Favourite colour (tick all that apply):</p>

% foreach ny $col our (gw red blue green cyan black/) {
<i nput type="checkbox" name="fav_col our" val ue="<% $col our %" />
<% $col our %

%}

The simplest way to accept multiple form inputs with the saraee is to use an array in our
<%r gs> block:

<%ar gs>
@ av_col our => ()
</ %ar gs>

We now have access to our submitted data (if any) usingsthe col our array.

It should also be noted that we could have used a scalar \&riab

<%ar gs>
$fav_colour => []
</ Yar gs>

However this immotrecommended. Mason will populateav_col our with an array reference if it
receives two or more values, but will use a simgtiéng if only a single value is received. Trying to
determine if$f av_col our contains a reference or a string will just add needless cexitglto our
code.

This demonstrates the importance of checking our argums8intse our form submissions can
receiveanynumber of arguments, we should never rely upon a scalar agurontaining only a
simple string.

We can force an argument to be a string or number with theviitig code:

ref ($nane) and die "name nust not be a reference";

Exercises

1. The fileww f or m ht i contains a simple form. Modify it to take arguments using@r gs>
block and display the results in the designated area.

84 Perl Training Australia (http://perltraining.com.au/)

Chapter 11. Component Arguments

The %ARGS hash

Mason provides another way of processing arguments, atid #ieatheyarcs hash. Inside a
componentyRGs contains a complete list of arguments that were submittethdd#RrGs is
particularly valuable when you expect a large or indeteat@mumber of arguments to your
component, or you have form submissions that contain fietdasethat cannot be valid Perl variable
names. This may occur if you're using an image-input elertraitsubmitsiame. x andnane. y

fields to your component.

It's perfectly acceptable to use both &r gs> block and the®Rrcs hash at the same time. For
example, the following snippet of code would populate exénaables from an image-input
submission:

<%ar gs>

$nane = "
$address => ""
</ Yar gs>

<% nit>

These inputs woul d be generated froma HTM. tag such as:
<input type="image" name="button" src="button.png" />

ny $button_x = $ARGS{’ button.x’};
ny $button_y = $ARGS{' button.y’};
</%nit>

<p>

Hel l o <% $nane % of <% $address %, you clicked the
imge at <% " ($button_x, $button_y)" %.
</ p>

Another good example of usingRGs is when we wish to validate our data using
Dat a: : For nval i dat or . We can simply pass through the entgecs hash:

<% nit>

use Data:: FornVvalidator;

nmy $results = Data::FornValidator->check(\YARGS, \%profile);
</ %nit>

%if ($results->has_invalid or $results->has_missing) {

% # Re-display our form giving it our results
% # to allow for better feedback.
<& formnmhtm, results => $results &
%} else {
<p>Thank-you for your subni ssion! </ p>
% # Do something with our form subm ssion.
% }
Exercises

1. Modify yourwwv f orm ht i file to perform validation on the submitted fields. If valiabet
fails, then display theor m error. mht i component instead of your submission results.

Perl Training Australia (http://perltraining.com.au/) 85

Chapter 11. Component Arguments

Calling components with arguments

86

Argument handling is a straightforward and easy way to maiiagn submissions in top-level
components, but its usefulness extends far beyond managergnput. We can also call Mason
components and pass them arguments. For example, leenprétat we have a component that
retrieves and displays information about a book, given 8&N, and also takes an optional discount:

% # di spl ay_book. mht mi
<%ar gs>

$i sbn

$di scount => 0

</ Y%ar gs>

<% $book->title %</ b> $<% $book->price %

% if ($discount) {

<i >Just $<% $book-price * (1 - $discount/100) %
i ncl udi ng your <% $di scount %% di scount!</i>

% }

<%nit>

use Local :: Book: : Cat al ogue;

ny $book = Local :: Book: : Cat al ogue- >new $i shn) ;
</%nit>

We can now call our component with arguments like so:

<& di spl ay_book. mhtm, isbn => '0596001738, discount => 20 &>

and we could expect this to display:

Per| Best Practices $75

<i >Just $60 including your 20% di scount!</i>

This also demonstrates why we may wish to have argumentkdthat do not always include
defaults. It would be an error for us to ever call this compuanégthout specifying an ISBN, and as it
is not a top-level component there should be no risk of it peiled directly by a user.

Component calls with arguments also introduces the coruddqding able to padsashess
arguments, as well as scalars and arrays:

% # user_details. mhtnl
<%ar gs>

$nanme

$addr ess

@obbi es

% el ephone

</ %ar gs>

We could then call this component like so:

<& user_details.mhtm,
name => "Bruce \Wayne",
addr ess => "123 Bat Ave",
tel ephone => {
hone => "555 1234",
wor k => "555 4567",
nobil e => "04 BAT PHONE",
I
hobbies => ["chess", "electronics", "fighting crine"],
&>

Perl Training Australia (http://perltraining.com.au/)

Chapter 11. Component Arguments

It should be noted that we always pasterencedo arrays or hashes to our components, just like we
would if we were calling regular Perl subroutines. |

C Although the content of an <var gs> block looks like Perl code, it isn’t. Each variable definition
must be on a single line and lines do not end with semi-colons (;). Perl expressions are allowed,
including those that refer to previous arguments.

Exercises

1. Thej oke. mht M component takes two argumerjtske andpunchl i ne, and uses some simple
javascript to display them. Call it now from one of your compats, passing in the details of
one of your favourite jokes.

2. Write your own component that takes a number of argumgots choice) and formats them.
Call this component from another component.

3. If you have time, modify your component so that one of itpuanents is a list of values, and
display the contents as an itemised list.

Chapter summary

« We can specify component arguments in ¢her gs% block.

« Scalar values in owvar gs% block will contain array references if there were multipldues in
the form by that name.

- The %ARGS hash gives us direct access to all of our arguments.

Perl Training Australia (http://perltraining.com.au/) 87

Chapter 11. Component Arguments

88 Perl Training Australia (http://perltraining.com.au/)

Chapter 12. Autohanders

In this chapter

In this chapter we will explore one of Mason’'s most power&atures, thautohandler
Autohandlers allow for broad modifications to be applieddatent and components, such as the
addition of navigation and style information. They may digoused for more advanced operations
such as access controls.

Before we discuss autohandlers, we’ll examine some of thsomes why a broad way of modifying
or controlling content is essential to creating a maintai@avebsite.

Consistency

The cornerstone of any good website is a consistent lookegldEvery page should have the same
layout, navigation, and style; or it should differ from therm in well-defined ways. Users are
almost always looking for your content, and don’t want todnthe extra problems of dealing with
changing navigation and layout.

Cascading Style Sheets (CSS) provide an excellent way toedlediw a site should look and behave.
While an in-depth discussion of CSS is beyond the scope stthirse, the correct use of CSS can
significantly increase the maintainability of any website.

However even with the use of style-sheets there are still HEMments that need to appear on
every page. These can be logos, navigation menus, copymightnation, and everyday structure to
ensure that content appears where it should. When we waptiate one of these elements, we need
to do so for every page in our site. That's a real drag!

Luckily, Mason provides a system to elegantly solve the ist@scy problem. Put simply, whenever
a page is called, a special component known aadhehandl er has an opportunity to act first. Most
autohandlers simply take the output of a page and wrap it @t afstandard headers and footers.
This means that individual pages need to only containtent

Let's see an example autohandler now.

<htm >

<head>

<title>Ascidian Central </title>

<link rel ="styl esheet" type="text/css" href="/style.css" />
</ head>

<body>

<hl>Asci di an Central </ hl>

% $m >cal | _next;

</ body>
</htm >

In the above code, we output some headers, and a title anld @ipig/ith some footers. In the middle
we have a strange lingm >cal | _next . This tells Mason to call the next item along in our chain,
which will either be another autohandler or the final reqe@sbmponent.

89
Perl Training Australia (http://perltraining.com.au/)

Chapter 12. Autohanders

By storing our header and footer in a component which is dallgomatically, we reduce the
likelihood that a wrong header or footer component is cadliethat an important component is
forgotten.

We also limit the scope of changes to our invariant sectiomst file, regardless of whether we're
adding a new navigation bar, further copyright sectiongaraving something.

The execution chain

When a Mason component is requested the following stepsilake:

1. Mason checks to ensure the requested component exisdodfs not then Mason uses the
dhandl er (default handler), which is covered later in this course.

2. Mason opens the requested component and checks to seeeifitle any special inheritance
directives.

3. If there are no special inheritance directives, Masokdadn the same directory as the
component for aaut ohandl er file. If there is a special inheritance directive, Masondalé
that instead. We’ll examine this in more detail later.

4. Mason then walks up the directory structure looking fottfar autohandlers.

5. Each autohandler is then executed in turn from top mosptimin most, followed by the
component and any components it includes.

call_next

90

In the above example we user >cal | _next to call the next item in our chain, which is often the
page componentitself, but could be another autohandlarrictain.

Let’'s assume we have the following three files:

aut ohandl er

<htm >

<head>

<title>Ascidian Central </title>

<link rel ="styl esheet" type="text/css" href="/style.css" />
</ head>

<body>

<h1>Asci di an Central </ h1>

% $m >cal | _next;

</ body>
</htm >

col d_wat er/ aut ohandl er

<!-- Begin section -->
<h2>Col d water varieties</h2>

% $m >cal | _next;
<l-- End section -->

Perl Training Australia (http://perltraining.com.au/)

Chapter 12. Autohanders

col d_water/sea_tulips.htm

<!-- Begin content -->

<p>

Sea Tulips are sessile filter feeders found in coastal waters at
depths up to 80m Their name derives fromtheir appearance a
knobbly " bul b’ attached to a long ’'stalk’. The col ourati on of Sea
Tul i ps depends upon their association with a synbiotic sponge that
covers their surface

</ p><p>

Despite their nanme Sea Tulips are aninals, not plants.
</ p>

<!-- End content -->

We'd access our sea tulips’ content by navigating to
http://our.url/col d_water/sea_tulips. ht i which would build the following html:

<htm >

<head>

<title>Ascidian Central </title>

<link rel ="styl esheet" type="text/css" href="/style.css" />
</ head>

<body>

<h1>Asci di an Central </ hl1>

<l-- Begin section -->
<h2>Col d water varieties</h2>

<!-- Begin content -->

<p>

Sea Tulips are sessile filter feeders found in coastal waters at
depths up to 80m Their nane derives fromtheir appearance a
knobbly " bul b’ attached to a long ’'stalk’. The col ourati on of Sea
Tul i ps depends upon their association with a synbiotic sponge that
covers their surface

</ p><p>

Despite their nane Sea Tulips are aninmals, not plants.

</ p>

<!-- End content -->

<l-- End section -->

</ body>
</ htmi >

Exercises

1. There is already @w/ aut ohandl er . Modify it to display a tagline, copyright notice, or other
text at the bottom of each rendered page.

2. Modify thewww aut ohandl er to include your navigation component on each page. You may
also make any other site-wide modifications if you wish.

3. Create an autohandler inside yaw# pr oduct s directory that displays a simple title, or title
and footer. Verify that pages inside theoduct s directory contain this extra information, and
those on the rest of your site do not.

Perl Training Australia (http://perltraining.com.au/) 91

Chapter 12. Autohanders

Methods

Our new website is great! It's easy to add new content, ar@#ésy to change our layout and design.
However, there is still one problem that can be seen. Theeditlall of our pages remains static.

Ideally, we'd like to have a way to query our content for infa@tion such as titles, keywords, access
controls, and other per-page specifics. In Mason this is &edy by usingnethods

Methods are attached to a component, but can be called frgwihame. They allow components to
provide extra services. It's also possible to attach methiodutohandlers, providing a "default"
method when no specific method exists on the component itself

Calling methods is very similar to calling components:

<& / pat h/t o/ conponent : met hod &>

We could call the i t | e method on our ndex. ht i component as follows:

<& index.htm:title &

Of course, in our autohandler our requested component iflitierent for each request. Luckily,
Mason provides us with a shortcut. The special compoRERIEST always refers to our current
request:

<& REQUEST: title &

We’re more likely to see this embedded insidét | e> or <h1> tags, like this:

<title><& REQUEST: title &</title>

Now that we know how to call a method, we need to know how toenttiem. Creating a method is
done using a speciabsret hod> block:

<%rethod title>
Exanmple title
</ %ret hod>

Our method can contain any valid Mason code, and can alsatgkenents, and do anything else
that a normal component can do.

Exercises

1. Modify yourwwv f or m ht M page to include ai t | e method that returns a static title.

2. Modify yourww aut ohandl er to call theti t1 e method on the requested component and
display at the top of the page #n1> tags.

3. Modify your autohandler also insert the title in betwelea<t i t 1 e> tags in the<head> block.

4. What happens if you try to browse to a different page thattwai t | e method? We'll learn
about this more in the next section.

Default methods

Methods are fantastic when they exist, but attempting tecalethod that does not exist results in a
fatal error from Mason. It's a lot of work to add methods tomveomponent in our site, especially if

92 Perl Training Australia (http://perltraining.com.au/)

Chapter 12. Autohanders
our site is very large. Worse still, we may end up duplicatimgthod code if we want many of our
methods to work the same way.

Fortunately, we don’t need to go to quite so much effort, ahous can bénheritedfrom
autohandlers. If we can’t find a method on a component, thelooleat its autohandler instead. If
it's missing the method, we look at the autohandler’s autdhex. This continues up the chain until a
method is found, or we run out of autohandlers and an errangted.

The great advantage of this inheritance is that we can peavgingle method in our autohandler,
and simply override it as needed for each individual comptne

Exercise

1. Modify yourwwv aut ohandl er to provide ai t|1 e method that contains a default title.
2. Verify that your title default title is used on pages migstheir ownt i t | e method.

3. Now add a i t 1 e method to thewwv pr oduct s/ aut ohandl er file. What happens to the title of
content inside that directory?

Attributes

Closely related in concept to methods are that of compoatgnithutes Just like methods, attributes
can be set on components, and just like methods they can egtathfrom autohandlers. However
attributes are much simpler than methods, as they're jaststata.

Attributes in Mason are set using&at t r > block:

<Yattr>

name => "Bonsai Car BBQ'

price => 99.95

show_navi gation => 1

cat egori es => ['outdoor’, 'floral’, 'autonotive]
</%ttr>

Note that attributes in Mason are just simple key/valuespaind can contain any type of scalar data,
including complex data structures. Attributes are dedame per line, and there are no additional
commas as you would find if you were declaring a hash.

In order to access attributes, we need to query our compgriemtlo this we first need access to our
component objecOne of the most commonly used components is that of our stdpself:

<p>The price is $<% $price %</ p>

<% nit>

ny $conp = $m >request_conp;

ny $price = $conp->attr(’ price’);
</ %nit>

We can also skip loading our component into a separate Variab
ny $price = $m >request_conp->attr(’'price’);

We can also fetch any component on our system:

Perl Training Australia (http://perltraining.com.au/) 93

Chapter 12. Autohanders

ny $conp = $m>fetch_conp(’/path/to/conp.mhtm’);
ny $price = $conp->attr(’price’);

Trying to fetch an attribute that does not exist will result in an exception, which unless caught
will halt your component and signals an error to the Mason interpreter. To tell Mason it's okay if
an attribute does not exist, we can use the attr_if_exi sts method:

ny $categories = $conp->attr_if_exists(’ categories’);

attr_if_exists returns the undefined value if the attribute does not exist.

C Keep in mind that attributes can only ever contain static content. If you need to generate
something dynamically, either from calculation, or looking it up in a database, or through other
means, you'll have to use a method.

It's easy to think that attributes are perfect for things such as page titles, and for simple sites
they are. However on complex sites the titles may be dynamically generated, and if you're using
attributes you'll find yourself having to rewrite some of your site.

You can have the best of both worlds by providing a default method that simply performs an
attribute lookup, which allows individual components to override that and supply their own
dynamically generated methods when needed:

<%ret hod title>
<% $m >request _conp->attr_if_exists('title) || "My Honmepage" %
</ %ret hod>

Changing autohandler inheritance

94

In most circumstances we want our components to inherit frair default autohandler, but there
will sometimes be circumstances where we do not want thig tilné case. One such example is
generating non-HTML pages in Mason. We don’t want our plakt file or our cascading style sheet
to inherit from an HTML-centric autohandler, although weymigsh to use Mason to generate those
pages.

Another common example where we want to use a higher-levehandler is in ndex. ht m files in
subdirectories. If we have a directory filled with books ftlleei ndex. ht m is likely to be the only
page that isota book, and therefore requires an exception to our specidd fuwmatting.

Luckily, changing our autohandler is easy. Mason has a apegil ags> block, which allows us to
modify component behaviour. The only key that is presengfyndd for<% | ags> isi nheri t, which
allows us to specify a new location for the autohandler:

<% | ags>

inherit => /sone/ ot her/autohandl er
</ % | ags>

Perl Training Australia (http://perltraining.com.au/)

Chapter 12. Autohanders

If we seti nheri t to the special value afndef , then our component will execute without an
autohandler at all.

<% | ags>
inherit => undef
</ % | ags>

Exercises

1. Modify thewww product s/ i ndex. ht mi file to inherit directly from the top-level autohandler.

2. Check that your neww pr oduct s/ i ndex. ht M page contains only the top-level autohandler
details. Ensure that other pages in that directory contiowse the normal inheritance chain.

Autohandlers for access-control

Autohandlers aren’t just good for layout, they're usefuldocess control as well. Let’s pretend that
we have a ‘'members only’ section of our website, and regheierhembers login before granting
access. Rather than having to worry about access contr@anaf our pages, we instead place our
members only pages into their own directory, with an autdlerat the top:

% # File: /menbers/autohandl er
%
% if (menber_is_logged_in()) {
% $m >cal | _next;
%} else {

<& login.mhtm &>
%}

Our autohandler simply does whatever work is needed tométerif the user is logged in. If they
are, then we display the content as normal, and if not we @ygplel ogi n. mht i component, which
should display an appropriate message or login page.

Note that our autohandler contains no other formatting ecisp mark-up. Because our members
autohandler is automatically invoked by the top-level hatadler, we know that layout and
navigation is already managed for us.

Chapter summary

- Autohandlers allow us to provide consistency to our website

« All autohandlers from parent directories are also used.

- We can use methods to specify information like page titles.

+ Default methods (in the autohandler) allow us to avoid arfiym missing component methods.
- Attributes are static data which a component may have.

- We can change our autohandler inheritance, although thégesy useful.

Perl Training Australia (http://perltraining.com.au/) 95

Chapter 12. Autohanders

96 Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Components in depth

In this chapter...

We've seen how Mason sites are built up from components, anldave already used a number of
their special features. In this chapter we’ll be taking axdé@pth look at components and their
capabilities.

Special Globals

$m

Mason’s special variabkemcontains thedTM.: : Mason: : Request object. The allows us to to retrieve
information on the current request, call other componemtssdfect the flow of executiogmalways
exists when using Mason.

You can read more aboginby usingper | doc HTM.: : Mason: : Request .

$r

When Mason is running undesd_per | , $r contains the Apache request object. This variable
provides access to the full Apache API, thus allowing us t¢13eTP headers, send messages to the
Apache logs and access configuration information. Reatddoc Apache: : Request to find out

more.

It should be noted that only exists when running undebd_per |, or something that emulates a
mod_per | environment. It's considered good practice to try and ssparode that uses from the
rest of your code, to make components easier to re-use and tes

%init and %cleanup blocks

One of the most commonly seen special-purpose blocks ithe t > block. Conceptually, the
<% ni t > block is identical to a%per | > block at the start of your component. So why do they exist,
and why are they so useful?

It's very common for a component to require some sort ofatigation. It needs to load modules,
calculate values, perform queries, validate input, ortise perform setup. We could just put this
at the top of our component, but doing so would make it harolea tasual reader to identify the
component’s primary purpose.

An <% ni t > block means we can move our initialisation code tolibdomof our component. This
means that when we open our file we immediately see what meikesriesting and unique. In fact,
our component could look and feel just like a regular HTML,fé&cept for the9 ni t > block down
the bottom. This makes our componemtschmore friendly to non-programmers who may need to
edit or change the HTML.

Perl Training Australia (http://perltraining.com.au/) 97

Chapter 13. Components in depth

Even though out% ni t > block may be at the end of our component, it still acts as ifdtavat the
top. Any variables declared in thes ni t > block can be seen throughout the whole component.
Here’s an example:

<p>
Hel l 0 <% $nanme %! Today is <% $weekday %, the
<% $day % of <% $nonth %.

</ p>

<%ar gs>

$nanme => "anonynous"

</ Y%ar gs>

<% nit>

use PCSI X gw(strftine);

my @ oday = localtime();

nmy $weekday = strftine("%A", @oday); # Mnday/ Tuesday/. ..
ny $day = strftinme("%", @Qoday); # 1..31

ny $nonth = strftime("98", @oday); # January/February/...
</%nit>

Mason also has &«! eanup> block, which is just like having avper | > block at the veryendof
your componenkoel eanup> blocks are much more rarely seen, since they don't have the sa
stylistic advantages of moving code away from the top of yysmmponent.

It should also be noted thate! eanup> blocks arenotguaranteed to run before your component
exits. If your component explicitly usest ur n, di e, issues a redirect, or otherwise halts execution,
then your<%e! eanup> block may never get run.

%doc blocks

98

Documentation is important in any program, but it's paticly important in large projects. It's
always possible to add documentation to a Mason programibyg sgandard Perl comments:

<Uperl >

This is a comment!

ny $price = 10.95; # This is also a comment
</ Y%perl| >

<p>The price is $<% $price %. </ p>
%# This line is also a coment.

We could also use HTML comments:

<l-- This is an HTM. comment -->

however those comments will be transmitted to the browséildthey can be useful to mark
sections of code to ease in debugging, or mark authorskep atenotrecommended for regular
program comments. Your users may be able to read how yourteetsrks, and you'll needlessly
increase the amount of data that you need to transmit totslien

Perl's standard comments are great for short notes, butrépégly become unwieldy when working
with large amounts of documentation. To solve this, we ca&nassdoc> block. Anything inside a
<%goc> section is considered a comment, and is ignored by Mason:

Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Components in depth

<%loc>

| ce-cream fl avour conponent. Mre than 50 flavours!

Witten by Paul Fenw ck <pjf@erltraining.comau> August 2006
Usage: <& ice_creamnhtm, flavour => "chocol ate", scoops => 2 &>

</ %doc>

If you're familiar with POD (se@er | doc per | pod) then you can embed this into yotkdoc>
sections to haveer | doc browsable documentation:

<%loc>
=headl NAME
ice_creamnhtm - Ice creamwith nore than 50 flavours!
=headl SYNOPSI S
<& ice_creamnmhtm, flavour => "chocol ate", scoops => 2 &
=headl AUTHOR
Paul Fenw ck <pjf @erltraining.comau> August 2006
=cut

</ %doc>

Avoiding work with %once

Mason components are similar to subroutines. They run, eiowork, and clean up afterwards.
However this can be inefficient if we're calculating the sanfermation every time, particularly if
that information is expensive to compute.

A <vence> block evaluates when the component is first loatedioreany requests. The most
common use ofvence> blocks is to create persistent lexical variables. Varialeclared in a
<%mnce> block are visible in the main component, as well as its sulpmments and methods and
don’t get cleaned up when the component has finished.

Code inside a%once> block isn't run as part of a request. This means that you daumsesr or $m
It also means that you should not do anything that cannofva@iaf or k; including connecting to a
database or other application.

However wecanuse a<%ence> block to prepare for a persistent database or other commdetier
on:

<%once>

This creates our $dbh variable, but doesn’t initialise it.
However because it’'s declared in the %once block, it wll
continue to |live between requests.

nmy $dbh;
</ Y%once>

Perl Training Australia (http://perltraining.com.au/) 99

Chapter 13. Components in depth

<% nit>
use DBI;

We may al ready have a database connection froma previous
conponent call. |If we don’'t have a connection, or it’'s
not responding, then make a new connecti on.

unl ess ($dbh and $dbh->pi ng) {
$dbh = DBI - >connect (...);
}

</%nit>

Component internals: other named blocks

There are a number of other special Mason blocks. These artiamed below.

%def

Used to create sub-components. These are like method$idyutan only be called from the
containing component.

%filter

Used to filter the output of a component. We'll cover this miora later chapter.

%text

Used to provide output which isot parsed by Mason. This is typically used to provide Mason
examples.

%shared

Variables created in the %shared block exist both in the @omapt body and also in any
subcomponents and methods. The contents of the %sharddrblobefore the main
component, its methods and subcomponents and may doigatiah. Unlike the %once block
it runs once for each request.

Escaping content

100

As a programmer, generating HTML and URLSs has a particukanlyoying requirement. You have
to make sure that everything is properly encoded in ordethiogs to work. For example, in HTML
a less than charactek() should be replaced witla t ; and in a URL each space character is
replaced with a plust).

Having to remember the encodings can be a real headacheymedtiing to encode can result in
broken links, mis-formed HTML, or even the possibility obss-site scripting attacks (see the
chapter on security for more information). Fortunately sdiatakes much of the pain out of this by
allowing you to escape your content as appropriate on itis owd. Thus we can write:

<p>Hel | 0 <% $name | h %</ p>

<p>Your personalised page can be found
<a href="http://exanpl e.confuser/ <% $nanme |u %" >here</p>

Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Components in depth

The use of h indicates that the result of our expression should be HTMiapsd. The use ol
indicates it should be URL escaped.

It's possible to configure Mason &waysapply (usually HTML) escaping te» % expressions.

This provides a safety net when datauld contain characters that need escaping. In these
environments you can use to disable escapes. Specifyingwhen no default escapes are used has
no effect.

It's a good habit to always specify the escaping scheme that should be used for expressions.
This ensures your output is always formatted the way you want, regardless of your operating
environment. It also means you need to think about how each piece of data is used before you
emit it, which will help avoid bugs and potential security flaws later on.

Exercises

1. Create variables containing: an email address, a urhdah®e of a company which includes
some punctuation characters.

2. Interpolate these into your component output using gpjate escapes.

Escaping by default

In some cases you may find that you need to escape everythingeyerate before it sent out as
output. You can achieve this by setting the configuratioralde def aul t _escape_f 1 ags toh oru as
appropriate.

If the def aul t _escape_f 1 ags variable is set and you wish to avoid escaping some giverubutpu
can use the¢n encoding flag, which applies no escaping. hhencoding can be combined with the
other filter options so thath turns of any default encoding and turns on HTML encoding/evhi

| nu does the same for URL encoding.

Creating your own escapes

Mason allows you to create your own escape filters. This idl@areced concept, but a very powerful
one.

Let's say that your site regularly displays amounts of moaag you'd like to be able to round these
with two decimal places ($2.00 instead of just $2, or $1.50dad of $1.4999). We can use Perl's
sprintf function to do this:

sprintf("$% 2f", $price);

however this is cumbersome to write frequently, and anrgifiwe want to change our currency
formatting in the future, perhaps by adding commas ($1(&B4s $1234.00) or even performing
conversion into the user’s local currency.

This is an excellent example of when to use a custom escaper bop-level autohandler we can set:
$m >i nt er p- >set _escape => (

nmoney => sub { sprintf("$%2f",$_[0]) }
)i

Perl Training Australia (http://perltraining.com.au/) 101

Chapter 13. Components in depth

This defines a newoney escape. Given the following snippet of code:
Price (incl GST): <% $price * 1.1 | noney %
this would produce:

Price (incl GST): $55.00 (when $price
Price (incl GST): $1.35 (when $price

50)
1.23)

Whenever calling escapes other than the defaults, it'sssacg to separate them using commas. The
following would apply both theoney andh escapes, in that order:

<% $price | noney, h %

Modules vs components

102

Components are great for generating website specific thikeyaavigation menus, headers, footers,
search boxes, and weather displays. In fact anything thrergées HTML is a perfect use of
components.

However, there are a lot other things dynamic websites ndghthat don’timmediately result in the
generation of HTML. For example connecting to and interartiith a database, generating
thumbnails for a photo gallery, sending email updates.

It can be tempting to put these tasks in components, to kéepydur code in one place, but is it
wise? An alternative is to put all non-website specific cade separate modules. These are a little
faster than Mason components, much easier to test, and canded outside of the web
environment.

For example, consider the situation where your websiteigeswarious status reports from
information stored in a database. The code for connectititetdlatabase, and collating the
information for the reports is not specifically website teth Having this code in a module will
make it much easier when your manager asks whether its p@$sityou to also send out a weekly
summary by email. If instead you had embedded the databgsadtion in your Mason
components, you'd have to duplicate parts of it (which maemsll have twice as much code to
maintain), or move the code out to a module anyway.

A general rule of thumb is as follows:

If the code generates HTML, then use it as a component.

If the code does not generate HTML, but generates somethaigst only useful in a HTML context (for
example a list of available style-sheets, or something wliads extra javascript to handle specific
browser CSS bugs), then use it as a component.

For everything else, put it in a module.

Returning a value from a component

The vast majority of Mason components generate HTML (ormbldput), as such it is fairly rare
for a component to return a value. However, if you do want yylmmponent to return a value, or list
of values, you can add an expli€it ur n statement.

return $result;

Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Components in depth

In these cases, thet ur n statement is usually added to tkm ni t > block.

Using cookies with Mason

Just as in our CGI code, there are reasons we might want taugers cookies from our Mason code.
To do this, we used : : Cooki e just as we have before:

<% nit>
my %ooki es = CA :: Cooki e->fetch();

unl ess ($cooki e{ preferences})
ny $cookie = CA :: Cooki e- >new(
-nane => 'preferences’,
-value => \%refs,

$r - >header s_out - >add(’ Set - cooki e’ => $cooki e);

}

</%nit>

Exercise

1. Add a cookie to one of your Mason components.

2. Use your CGI program from yesterday to check that you veckthe cookie.

Chapter summary

- Mason has two special global variablés:andsm
« %nit blocks can be used to put initialisation code elsewherettiatop of a Mason component.
- vgoc blocks can be used to store documentation.

« Yonce blocks allow you to perform an action once, when the compbisdirst loaded, and then
cache the result for future accesses.

« Mason provides a number of useful escaping mechanisms.

- Creating modules is often a better alternative to compafenimany non-HTML specific actions.

Perl Training Australia (http://perltraining.com.au/) 103

Chapter 13. Components in depth

104 Perl Training Australia (http://perltraining.com.au/)

Chapter 14. dhandler - The default handler

In this chapter...

We've already discovereglitohandlersa powerful mechanism for manipulating content on our site.
Mason comes with another mechanism for manipulating cothendoesn’texist on our site. This is
thedefault handleyor dhandl er as they are conventionally called in Mason.

Thedhandl er is invoked when Mason goes looking for content, but failsrid ft. dhandi er s are
important because they have a chance to produce contestage redirect, or simply display a
more usefult04 - Not founcpage.

Finding dhandlers

In the same way that Mason will recursively searchai@rohandl er s in the current directory and its
parents, the same applies when trying to finthand! er . A dhandl er in the current directory takes
precedence overdhand! er in the parent directory, and so on. If apand! er can be found, then a
standardio4 - Not found response will be generated.

Arguments

Inside adhandl er, the original page requested can be founghin>dhandl er _ar g. This is the full
path, but excludes any leading slash. For example, a refprest oduct s/ f oo. ht mi would have
$m >dhandl er _ar g returnpr oduct s/ f oo. ht m .

We can use our original page to generate a redirect, queriabatkse, conditionally include
components, perform a search, alert an operator, or doiagydlse that may be appropriate for the
data concerned.

Not Found

There’s a good chance that sooner or later you'll wadtizad! er that really does generateNst
Foundpage. To do this, we need to explicitly set the status usinghe apache request object.

% use Apache: : Constants gqw(NOT_FOUND) ;
% $r->content _type('text/htm");
% $r - >st at us(NOT_FOUND) ;

It's critically important that the status be set when getiegea Not Foundpage. This informs search
engines and user agents that the content was not found.dfahes is not set, then Mason will use a
status 0200 Successnd search engines and other services would try indexinggnothat simply
doesn't exist!

Any content in thaihandl er is interpreted as text that should be sent to the browsetidl er s will
inherit fromaut ohandl er s in the same way as other components, soMaot/Foundpage will have
any navigation and other features provided to the rest of gite. This makes dhandlers a very
useful way of handling missing content, as they can providsedul page that remains up-to-date
with the rest of the site.

Perl Training Australia (http://perltraining.com.au/) 105

Chapter 14. dhandler - The default handler

106

Generating redirects

One potential use fathandl er s is generating redirects. This may be done because pages hav
moved, allow us to correct common mis-spellings, or handraithat haven't logged in.

The Mason interpreter has a method calledi r ect that allows current processing to be stopped,
and for the browser to be redirected to a new page. While #rise used in any component, it is of
particular use inihandl er s, where redirecting to moved content is a common task.

% $m >redi rect ($new_url);

By default,r edi rect will generate a "moved temporarily" (302 Found) statussThdicates that the
user-agent should continue to use the original URL in ther&utThe redirect method can also be
called with a second argument to generate a "moved permgh€da1l) status if desired:

% use Apache: : Constants qw(MOVED) ;
% $m >redi rect ($new_url, MOVED);

An example dhandler

The following is a simplified version of the dhandler usedloaRerl Training Australiawebsite. It
checks for pages that are known to have moved and generadsect. If the page is not one known
to have moved, then we instead generatoaFoundstatus instead.

<%nit>

use Apache: : Constants gw(NOT_FOUND MOVED) ;

ny $request = $m >dhandl er _arg;

Some pages have noved permanently, and these are
itemised in the table bel ow

ny Y%ew | ocation_of = (

g{ booki ngs. htm } => q{/ booki ngs/},
g{ booki ngs/Al'l .ht '} => g{/booki ngs/},
g{courses. htm} => q{/courses/},
g{ books. ht m } => q{/ books/},

)

If our request is for a known-nobved page, then
redirect imediately with a "noved permanentl|y"
status. Calling redirect finishes our request.

if ($new_| ocation_of {$request}) {
$m >redirect ($new | ocati on_of { $request}, MOVED);
}

Otherwi se, our page is "Not Found". W explicitly
set our content type and status. CQur nmessage wl |
be automatically wapped by our autohandl er.

$r->content _type('text/htm’);
$r - >st at us(NOT_FOUND) ;

<% nit>

<p>

Sorry! The page <tt>/<% $request %</tt> could not be found
on this server. |If you were expecting it to exist, then please
contact us and | et us know.

</ p>

</%nit>

Perl Training Australia (http://perltraining.com.au/)

Chapter 14. dhandler - The default handler

Exercises

1. Try visiting a non-existent page in your Mason area. Olesethat message you receive.

2. Create amww dhandl er file that contains a simple "page not found" message. Now héapens
when you try to navigate to a page that does not exist?

Virtual pages

Another common use of dhandlers is to generate content diytti@r example, suppose part of
your website provides access to a mailing list archive.

You could write a program that records emails sent to thaltistwrites files appropriately, but that
would require a lot of work, and potentially generate a largmber of files that require
management. If we want our files to contain links to followsup other messages, then we may be
re-writing files many times.

A standard CGI approach would be to store the emails in soamelatd format (perhaps a database)
and then to provide the relevant information upon requestiuests may look like:

http://exanpl e.conlmailing-1ists/archive. pl ?year=2005&nmont h=11&day=28

An alternative would be to use Mason’s dhandlers. Your dleamday work a lot like your CGI
approach, but it comes with the added power of the Mason caergts hierarchy as well as
allowing you to use more meaningful URLSs:

http://exanpl e.com mailing-1ists/archive/ 2005/ Nov/ 28

Virtual quotations

A good use of alhandl er is displaying information from databases, stored files,tbebnon-HTML
data. As a simple example, we're going to see liaandl er s can be used to access quotations.

Thef or t une Unix command displays a random and often amusing quotakioa fortune file format
consists of a series of quotations, each separated by anp&gessign on a line by itself:

Al though the Perl Slogan is There's More Than One Way to Do It, |
hesitate to make 10 ways to do somet hi ng
- Larry wall, 1990
%
And don’t tell ne there isn’t one bit of difference between null and
space, because that’'s exactly how much difference there is
- Larry wvall, 1990
%
It should be illegal to yell 'Y2K in a crowded econony.
- Larry wall, 1998

We’'d like an application that allows us to visit a URL and rieeea quotation:

/quotes/Larry_Vall/3

In this case we want the third quote by Larry Wall.

Perl Training Australia (http://perltraining.com.au/) 107

Chapter 14. dhandler - The default handler

Exercises

1. Theww quot es/ dhandl er file contains some basic code to find and parse these quofii®n
Modify it so that it extracts and displays the expected quote

2. Create a new file in youfuot es directory and add a few quotations from your favourite film,
book, or even yourself. Verify that these quotes are now ddalgour site.

Caching pages

Sometimes creating our page can represent quite a bit ot.éffeen with our simple quote example
we had to search through the file for the quote that we're.dfteless our data needs to be
regenerated every time, we can cache it.

When caching the result oféhandl er, we almost always want to key the cache to the requested
page. If we didn’t do this, then we’d serve the same (cachadgpo anyhandl er request.

Caching based upon the request URL is easy:

<%nit>

return if $m >cache_sel f(
key => $m >dhandl er _arg,
expires_in => "10 mins’

)i

</%nit>

We talk more about caching in the next chapter.

\A/ cache_sel f only caches content, not the HTTP status. If your dhandl er generates a redirect,
file-not-found, or any status other than a simple 200 OK then you should handle that before
invoking any caching code.

It's a good idea not to even try to cache redirects (since they contain no content), and 404 Not
Found pages (as there is an infinite number of those), and only cache dhandl er requests that
result in real content.

Exercise

1. Update younww quot es/ dhandl er to cache quotes for 30 seconds. Verify (by looking at the
timestamp generated by the component) that quotes are taihgd successfully.

Declining the request

108

Sometimes youdhandl er may be called when it really would be more suitable for itsepaor
grandparent handler to handle the request. Perhaps yogetalbundhandl er has been called for
an image that does not exist. We'd like to decline the reqadlsiving a parentihandl er to generate
aNot Found redirect, or other content as appropriate.

Perl Training Australia (http://perltraining.com.au/)

Chapter 14. dhandler - The default handler

Declining a request is easy:

$m >decline();
A call to decline passes control up the component tree, amtiiandler is found which does not
decline the request. If no dhandler will accept the requsgrror is generated.

Any output generated by a dhandler while processing theasidsi discarded upon the call to
decline. This simplifies the code for the dhandler as prasgssn start as normal until sufficient
conditions occur to generate the decline.

Chapter summary

- dhandlers are called when Mason looks for content but faifst it.

- dhandlers can be used to generate Not Found pages, gemrgliatets and also create content
(virtual pages).

« Pages created by dhandlers can be cached for later accesses.

- dhandlers can decline requests, when this happens theigberldhandler is called.

Perl Training Australia (http://perltraining.com.au/) 109

Chapter 14. dhandler - The default handler

110 Perl Training Australia (http://perltraining.com.au/)

Chapter 15. Caching

In this chapter...

Writing a successful website is not just about having soingtthat looks good and is functional. It
needs to be scalable as well. Sometimes you'll find some af gmmponents have expensive
operations, such as downloading news items, or performatap@se queries, and having these run
for every request is slow and inefficient. Luckily, Mason @swith a rich set of caching utilities out
of the box.

General cache

Mason comes with a built-in cache mechanism. This allows $dre, retrieve, and expire values
with a minimum of fuss. Caching is done ompar-componenbasis, so you need not worry about
your keys conflicting with other keys on the system.

We can gain access to our cache by callrg>cache. Let’s say that we have a component that’s
part of an administrator login process, and as part of thatess we report the last time the
administrator logged in. Our code may look like this:

Get our last login, or "never’ if we’'ve never seen a
login before.

ny $last_login = $m >cache->get(’last_login’) || "never";

Update our last login to now
$m >cache->set ('l ast_login’, scalar |ocaltine)

It's also possible to cache more complex data structureis.i$ldone by passing a reference to the
data structure as the second argumentto For example, consider that we have a list of stock
prices. Generating these takes a while so it's not somethégant to do for every request.

First we attempt to get our prices out of the cache; if we sedcee’ll use those. If we don't, we’'ll
generate new ones and use those instead.

<Uperl >
ny $stock_ref = $m >cache->get(’ stock’);

if (not $stock ref) {

This assunmes that get_stock_prices has been
witten el sewhere, or inported froma nodul e.

$stock_ref = get_stock_prices();
$m >cache- >set (' stock’, $stock_ref);

}
</ Yperl >

<p>Current stock prices: </p>

% foreach ny $synmbol (keys %bstock ref) {
<% "$synbol -- $stock_ref->{$synbol}" |h %
% }
</ ul >

Perl Training Australia (http://perltraining.com.au/) 111

Chapter 15. Caching

Cache expiry

By default our cache keeps keys forever, however we may natyal want that for all data. Some
data, such as stock prices, are only valid for a certain keafjtime. We can set keys to automatically
expire after a certain period of time by providinghérd argument taet . For example:

Stock prices are really only good for about 20 m nutes
$m >cache- >set (' stock’, $stock_ref, 20 mnutes’);

We can also expire values explicitly by using theove call:

$m >cache->renove(’ stock’); # No stock values left

Exercises

1. The filewww weat her . ht i predicts the weather with a low degree of accuracy. Modi§pithat
it caches the weather report for 30 seconds.

2. Check that your page now displays the cached weather wiadlalzle, or generates and stores
the weather when it's not available.

Caching pages

112

When creating a site, you may find that you want many of youepag be rendered with Mason,
but they only change rarely once they have been renderedeTiages are ideal candidates for
Mason’s simple page-caching strategy.

It's easy to mark that a page should be cached indefinitely:

<% nit>
return i f $m >cache_sel f();
</%nit>

Thecache_sel f call has one of two effects. If the page has not already beemech then
cache_sel f signals to Mason that a copy of the page should be saved ggtbeen generated. In
this circumstance it returns a false value.

If cache_sel f already has a cached copy of the component, then it will mesiirue value, and send
the cached copy to the browser or calling component. By dhgdhr this we are able to return
immediately without evaluating the rest of the component.

With no arguments;ache_sel f will cache our page indefinitely, until we explicitly clear(imore on
this later). However it's also possible to cache our pageafspecific period of time:

<% nit>
return if $m >cache_sel f(expire_in => "10 nmins’);
</%nit>

Of course, simple caches are great for simple things, buegbimgs are more complex. Let's take
an example of our component that displays the weather iryaw# don’t want to fetch weather
information for every request, and we need to maintain ars¢paache for each city.

Perl Training Australia (http://perltraining.com.au/)

Chapter 15. Caching

<%ar gs>
$city
</ Y%ar gs>

<%nit>
return if $m >cache_sel f(expire_in => "2 hours’, key => $city);
</%nit>

By using thekey argument we are now able to tie our cache to a particularastyyell as ensuring
that we only refresh our cache every two hours.

Busy locks

Let’s pretend that it takes ten seconds to update our wesgpert for a city, and that our previously
cached copy has expired. What happens if a new request hegpeng this time? Since the cache is
expired then it'salsogoing to try and update the weather report. That's going fipka toevery
requestuntil one (probably the first) finishes generating the newtivergpage and updates the cache.
If we've been receiving five hits per second, and it takes éswsds to generate the report, then that
that'sfifty processes all trying to update the cache, when really wertedyged a single one doing

the work.

Clearly this situation is unacceptable, and Mason provédesution. Abusy lockallows us to
specify that the first process to start updating the cacheldte allowed to do so, but subsequent
requests should continue to use the old value while the newsdoeing calculated:

<% nit>

return if $m >cache_sel f(
expire_in => "2 hours’,
key => $city,
busy_l ock => " 30 secs’,

)i

</%nit>

Here we have specified a busy lock of 30 seconds. When our xigita g, thefirst time we try to
access itache_sel f will return false, and at the same time extend the expiry tfng@ur existing
data by 30 seconds. This means that one component will workamputing the value, while the
rest continue to use that old data. Once the new value hasbegputed, it's used immediately.

The busy lock allows us to avoid needless recomputatiorglsotprovides a safety net that if a
particular process fails then another process will take.d#/80 seconds pass without an update,
then the cycle repeats.

The time on a busy lock should la¢ leastthe longest time expected to recompute a given page. If
too short a time is used then we may end up duplicating wottkpagh too long a time can result in
delay updates when recoverable errors occur.

Chapter summary

- Mason comes with a rich caching system out of the box.
« Each component has its own cache for storing data.

« Whole pages can also be cached.

Perl Training Australia (http://perltraining.com.au/) 113

Chapter 15. Caching

- Busy locks can be placed on pages to allow only one procegsdate the page cache at once.

114 Perl Training Australia (http://perltraining.com.au/)

Chapter 16. Filters

In this chapter...

Mason makes it easy for a component’s output to be inspecteldamged before being sent to the
browser. There are a great many uses for such a facilityjdireg removal or addition of HTML
comments, XHTML validation, HTML tidy-up, automaticallyliing in forms, censoring profanity,
and highlighting search results.

%filter blocks

To filter a component we can use@ i | t er > block. Inside the filter block the output of our
component is stored insige. Our filter can inspect and change this content before itss@éto the
next higher componentin our chain (or to the browser, if @@¥a top-level autohandler).

Component calls with content

Sometimes we don't want to filter the result of an entire congua. Instead, we'd simply like to take
a block of text and transform it in some way. The following ex#de, adapted from the

HTM.: : Mason: : Devel documentation, demonstrates how we can do this for creatirg-lingual
websites:

<& /filters/il8n.mhtm &>
<en>Good- day</ en>
<en-au>G day</ en>
<fr>Bonj our</fr>
</ &

Ouri 18n. tht M component could look like this:

% my $l ang = $m >sessi on->{| anguage} || 'en’;
%ny ($text) = ($m >content =~ n{<$l ang>(.*?) </ $l ang>});

<% $t ext %
This checks our session to see if a preferred language hasbksted, and if not it uses a default of
English. It then simply finds the appropriate language bbud displays it.

It should be noted that this component is not complete, aseisd’t deal with the situation where a
particular language is not available. In that situation wa/wish to choose a default language (such
as English), and log an error that we don’t have a transldtiothe text concerned.

Exercise
1. Write a filter block which changes all text to upper-casé.tRis intowwv fi | ters/ uc. mhtni .

(Hint: This should only need to calt on$m >cont ent and then interpolate the result).

2. Use this filter block in one of your components.

Perl Training Australia (http://perltraining.com.au/) 115

Chapter 16. Filters

Pre-filling forms in Mason

116

Mason has a special type of block callegvii | t er > block. A filter allows us to make alterations to
a component’s results, and can be used for a variety of pagp@&y using filters in combination with
HTM.: : Fi | | I nFor m we can easily pre-fill our forms based on user submissions.

<%ilter>

use HTM.:: FilllnForm

$ = HTM.:: FilllnForm>new>fill(
scalarref =>\$_,
f dat => \ %ARGS,

)

</%ilter>

TheHTM.: : Fi | | | nFor mmodule provides a number of useful options. Some of the meeéuliones
are detailed below:

target
Thet ar get option specifies that only the target form should be filledTinis is useful if your
page contains multiple HTML forms, of which our data is irded for only a single form.

$_ = HTM.::Fill I nForm >new>fill(
scalarref =>\$_,
f dat => \ %ARGS,
target => "registration",
)i
will only fill in fields inside a form named "registration":

<formnane="registration"> ... </forme

fill_password

By default, password fields are also filled-in. To disable,thét thei | | _passwor d option to

false:

$_ = HTM.::Fill I nForm >new >fill(
scal arref = \$_,
f dat => \ ¥ARGS,
fill_password => 0,

)i
Preventing password fields from being auto-filled removesigk of the client’s browser or
proxy caching passwords and other sensitive informatiodisk

ignore_fields
Rather than removing fields from thercs hash to avoid auto-population, we can also specify
them using thegnore_fi el ds tO HTM.: : Fi | | | nFor mi

$_ = HTM.:: Fill I nForm >new>fill (
scal arr ef =>\$_,
f dat => \ ¥ARGS,
ignore_fields => [’usernane’,’ password’],

Exercises

1. Thewwv | ogi n. ht i page was used in the Sessions chapter. Upon submissioret she given
information into a session.

Perl Training Australia (http://perltraining.com.au/)

Chapter 16. Filters

Change this code so that it useai: : Fi | | | nFor mto present to the user any information
already found in the session. Upon submission it shouldgh#me session information, and
redisplay the content in the form.

Chapter summary

« Filter blocks can be used to change our output before it isteghe browser.
- Filters can be used to select various language options temiationalisation.

« We can usefTM.: : Fi | | I nFor mto pre-fill forms in Mason, just as we have done for
HTM_: : Tenpl at e forms.

Perl Training Australia (http://perltraining.com.au/) 117

Chapter 16. Filters

118 Perl Training Australia (http://perltraining.com.au/)

Chapter 17. Session management

In this chapter...

Just as sessions are fundamental to the smooth working opf@@fams, they are essential to the
smooth working of Mason programs too. In this chapter we tai@her look at sessions and
consider how to use them with our Mason content.

Sessions in Mason

A default Mason installation does not come with any sessapabilities, however they’re easy to
add in a relatively transparent way. Mason has a number ehsidns available that live in the
MasonX: : hamespace, and one of thesetsonX: : Request : : W t hApacheSessi on.

TheMasonX: : Request : : W t hApacheSessi on extension uses the popularache: : Sessi on module
to provide session management that is effectively tramspao the end developer.

The extension adds two new methods are added to the Masoestezhject:

$m >del et e_sessi on; # Del etes the session from storage,
al so renoves any cooki es from browser.

$m >sessi on; # Provi des access to the underlying
Apache: : Sessi on hash.

Thesm >sessi on call makes available the special session hash, which caaioany information
you like. This hash is automatically preserved by Mason msahang placed in there by one request
will be available in the next.

You should keep in mind that theessionshemselves are temporary, they last only for the length of
the visitors browser session, or potentially even less tihing placed in the session hash will
eventually be cleared. When a user creates an account aiwptigite it's perfectly reasonable to
create a session that remembers their login, but theirtratin details should be placed into a more
permanent store such as a database.

An example

Let's pretend that our website has a number of differenestyéets available to it, allowing the user
a selection of look-and-feels. We'd like the user to be ablgitk a style, and we’ll use a session to
remember this choice.

Firstly, let's see a component that allows style selections
% ny @tyles = gw(default bigtext colourblind);

<f orm nmet hod="post" action="style_select.htm ">
<p>Sel ect a style:</p>

<sel ect name="styl e">
% foreach ny $style (@&tyles) {
<option val ue="<% $styl e %" ><% $styl e %</option>
% }
</ sel ect >

Perl Training Australia (http://perltraining.com.au/) 119

Chapter 17. Session management

120

<i nput type="submt" val ue="CGo" />
</ p>
</form

This simply creates a drop-down list which allows our usesdlect from one of three styles. Using
this list submits data tet yl e_sel ect . ht i , which may look like the following:

<%®once>
ny %l lowed_styles = map { $_ => $_ } gw(default bigtext colourblind);
</ Y%once>

<%ar gs>

$style => "defaul t"

</ Y%ar gs>

<%nit>

ny $session = $m >sessi on; # Obtain our session hash.

Pick a style if allowed, or otherw se pick 'default’

$sessi on->{style} = $allowed_style{$style} || 'default’;
</ %nit>

Now that we have a component that allows us to set our stylee®d our web-pages to make use of
it. Luckily, Mason’s autohandler means that implementiivgr/ide styles is a breeze:

<% nit>

ny $session = $m >sessi on;

ny $style = $session->{style} || "default";
</%nit>

<htm >

<head>

<link rel ="styl esheet" type="text/css"

href="/styl es/ <% $styl e %.css" />

</ head>

<body>

% $m >cal | _next;

</ body>

</htm >

Now all of our pages will load the user-selected style-sHéab style-sheet has been selected, or if
the user is not accepting cookies, thendbieaul t stylesheet will be used.

In our example we have listed our allowed styles in two different components. This may cause
us headaches when we're expanding our website in the future, as we may update the style list in
one location, but not the other.

A better solution would be to move the list of allowed styles into its own module, and then to use
that module. This means that the allowed style lists can be kept in a single location. It also
allows for the possibility of a dynamically generated style list.

Perl Training Australia (http://perltraining.com.au/)

Chapter 17. Session management

Exercises

Your workspace is already configured to w&eonXx: : W t hApacheSessi on.

1. Thewww | ogi n. ht i page allows the user to enter some basic information abeutshlves
(name and favourite colour). Write code that processesrfismation and stores it into the
user’s session.

2. Theww profile. htm page is intended to display the user’s profile. Update thikedo read
the information from the user’s session and display it.

3. Our user may visit thew profi | e. ht M page without having an active profile in their session.
Determine a sensible course of action in this instance apteiment it.

Session cleanup

Unlike c@ : : Sessi on which allows maximum expiry times, sessions made witiche: : Sessi on
will last forever. We can always clear our sessions expyicit

$m >del et e_sessi on;

This will delete both the session from the store, and the ieofoem the browser.

It's common practice to keep a timestamp on sessions, allpws to determine the last time a
session was accessed, and also ensuring that sessionsitmealty refreshed in the store. This
could be placed in a top-level autohandler:

$m >sessi on->{ti nestanp} = tine;

It's commonplace for a periodically scheduled applicatmhandle session clean-up. The most
common implementations involve testing session files feirtlast modified date, or checking the
last-modified timestamp on database rows.

Chapter summary

« Sessions are essential to keeping state between clierdstsqu
- These are usually achieved by giving the user a sessione&ooki
« Mason has integration hooks withache: : Sessi on.

« Apache: : Sessi on does not allow us to expire sessions as easilyaas: Sessi on did, however we
can achieve a similar effect by recording timestamps.

Perl Training Australia (http://perltraining.com.au/) 121

Chapter 17. Session management

122 Perl Training Australia (http://perltraining.com.au/)

Chapter 18. Further Resources

Online Resources

« Embedding Perl in HTML with Mason - http://www.masonboaint
- Mason Headquarters - http://www.masonhg.com/

« Ovid’s CGI course - http://users.easystreet.com/ovidfmurse/

- PerINet - The Australian Perl Portal - http://perl.net.au/

- The Perl Directory - http://perl.org/

« Comprehensive Perl Archive Network - http://search.cpayi.

« Perl Mongers user groups - http://pm.org/

« PerlMonks - http://perimonks.org/

+ O'Reilly’s Perl.com - http://perl.com/

Books

Embedding Perl in HTML with Masgmave Rolsky Ken Williams, O'Reilly and Associates
Perl Best PracticesDamian Conway, O’Reilly and Associates

Programming PetlLarry Wall et al, O’'Reilly and Associates

Perl for System Administratioiavid N. Blank-Edelman, O’Reilly and Associates

The Perl Cookboagktom Christiansen and Nathan Torkington, O'Reilly and Asates

See Also

« Catalyst http://www.catalystframework.org/, a powednt elegant Perl MVC framework (like
Ruby on Rails, but for Perl!)

. Jifty http://jifty.org/view/HomePage, a web applicatifvtamework with tools to support common
operations.

- Template Toolkit http://www.template-toolkit.org/, sstapowerful and extensible template
processing system; fills many of the same needs®s : Mason.

Perl Training Australia (http://perltraining.com.au/) 123

Chapter 18. Further Resources

124 Perl Training Australia (http://perltraining.com.au/)

Appendix A. Mason Setup and Administration

Introduction

In this chapter we will examine the configuration and setud ®ML::Mason under Apache 1.3
using mod_perl. This covers the most commonly encounterasbil installation environment.

You can learn more about Mason configuration by using per| doc HTM.: : Mason: : Adni n, Of by

reading the administrators manual online at http://www.masonhg.com/docs/manual/Admin.html.
This topic is also covered on pages 102 - 112 in the Mason book.

Quick Setup

Setting up Mason under Apache is a simple process. The strggafiguration involves adding the
following stanza to a mod_perl enabled Apache configurdtien

Per | Modul e HTM.: : Mason: : ApacheHandl er

<Location />

Set Handl er perl-script

Per | Handl er HTM_: : Mason: : ApacheHandl er
</ Locati on>

This instructs Apache that all requests should be manag#uElssrm.: : Mason: : ApacheHand! er
module. This setup will work fine if everything in your direcy is to be Mason-enabled, but that's
rarely the case. The following configuration enables MasonHt m , and. t xt files, and explicitly
denies access to internal components.

Per | Modul e HTM.: : Mason: : ApacheHandl er
Per | Modul e Apache: : Const ant's

<LocationMatch "\. (htm |txt)$">

Set Handl er perl-script

Per | Handl er HTM_: : Mason: : ApacheHandl er
</ Locati on>

<Locati onmatch "\.(nm(htnl | pl|txt)]|dhandl er| aut ohandl er) $">
Set Handl er perl -script
Per | I ni t Handl er Apache: : Const ant s: : NOT_FOUND

</ Locat i onMat ch>

Mason with the lid off

On a more complex website, or on a server that serves mangendent Mason-enabled sites, we
need to do a little more work to have our system running smgdthorder to understand the
advanced configuration, we need to examine a few conceyits firs

Perl Training Australia (http://perltraining.com.au/) 125

Appendix A. Mason Setup and Administration

The Mason interpreter

At Mason’s heart is th&lason interpreterAt a very basic level the interpreter takes a component
and executes it, however it also handles caching of compdetponents on disk, the maintenance
of in-memory caches, and making sure that all output and®goto the right places.

Most site-specific configuration for Mason is set or passet@édvason interpreter.

You can learn more about the Mason interpreter by reading per| doc HTM.: : Mason: : I nter p

and pages 98 - 100 of the Mason book.

The component root

As described in earlier chapters, all Mason components liweshside a directory tree. The top of
this directory tree is known ghe component root

It is possible to specify multiple component roots to Masehich will be searched in the order
specified. This allows for a directory of default or commomgpmnents to be specified, and for new
components to be written or existing ones to be overriddea per-file basis.

To learn more about Mason component roots read pages 84-86 and 203-204 in the Mason
book.

The data directory

Mason can make use of a directory in which to cache code anga@oemts, known as théata
directory, or thedat a_di r in many configuration files. Mason doesn’t require a datectiiry, but it
can speed up execution dramatically.

The data directory stores compiled Mason components, mgdanat rather than having to interpret
components every time they are used, this only needs to beatwe per component. By default,
Mason will check to see if the original component has beareidt; if so, it will be recompiled and
stored into the data directory.

Mason wrappers

The greatest level of control over how requests are handlegwriting our own wrapper around the
Mason interpreter. When handling a request, Apache canstriated to look inside a given
namespace forigandl er method. By writing our own package and placingaadi er inside it, we
can choose the code which is used to execute each request.

Here’s a simple wrapper which configures a Mason handler asggs requests directly to it:

126 Perl Training Australia (http://perltraining.com.au/)

Appendix A. Mason Setup and Administration

package MyConpany: : Mason;

use strict;
use HTM.:: Mason: : ApacheHandl er;

First we create an ApacheHandl er that will nanage
all requests. This happens when Apache first starts,
and is shared between all child processes.

ny $ah = HTM.:: Mason: : ApacheHandl er - >new(
conp_root => '/path/to/conp_root’,
data_dir =>'/path/to/data_dir’,
)
Whenever we need to handle a request, we just pass it
to the handler created above.

sub handl er {
ny ($request) = @;

return $ah->handl e_request ($request);

}

The wrapper above does not provide us with any extra funalignbut it does provide us with a
very useful starting point for more advanced handlers.

To use a handler as part of Apache, we load it usirgraRequi r e Statement:

Per| Requi re /et c/apache/ handl er. pl

Once loaded, we can reference the package declared insithatidler as the target for our Mason
requests. Note the use @fConpany: : Mason in the configuration below.

<LocationMatch "\. (htm | css|txt)$">

Set Handl er perl -script

Per | Handl er My Conpany: : Mason
</ Locati on>

<Locationmatch "\.(n{htnl|pl|txt]|css)|dhandl er|aut ohandl er) $">
Set Handl er perl -script
Per | 1 ni t Handl er Apache:: Const ants: : NOT_FOUND

</ Locat i onMat ch>

One common configuration requirement is to have a numberrfalisites on a single server, all of
which use Mason. A wrapper script is perfect for this, as weateeck to which site is associated
with a given request, and handle it appropriately.

package MyConpany: : Mason;

use strict;

use HTM.:: Mason: : ApacheHandl er;

use Apache: : Constants qw(DECLI NED) ;

my %andl er _for;

Wal k through each site, and establish an ApacheHandl er for each.

We use our site name to find the conponent root and establish
our data directories.

Perl Training Australia (http://perltraining.com.au/) 127

Appendix A. Mason Setup and Administration

Using

128

foreach ny $site (gw www. perltraining.comau www. exanple.com)) {
$handl er _for{$site} = HTM.:: Mason: : ApacheHandl| er - >new(
conp_root => "/var/ww $site",
data_dir => "/var/cache/ mason_dat a/ $site"

)
}

Each request is passed to our handl er, which finds the
associated site and fires off the appropriate ApacheHandl er
created above.

sub handl er {
ny ($request) = @;

Query our request object for the server hostnane.
ny $site = $request->server->server_host nane;

nmy $handl er = $handl er_for{$site};

Decline sites that we don’t know how to handl e.
return DECLI NED unl ess $handl er;

return $handl er - >handl e_r equest ($r equest) ;

Mason through CGI scripts

Mason provides the best performance when running in cotipmwith Apache and mod_perl,
however you may encounter situations where you can’t ortdeart to run Mason in a mod_perl
environment.

Mason has a special module callgd: : Mason: : €A Handl er that allows a regular Mason
environment to be provided by a CGlI script. A basic CGIHanglegram looks like this:

#!/usr/bin/perl -w
For this exanple, this script is 'mason_handler.cgi’

use strict;

This sinply creates a new Cd Handl er object and passes
the request to it. It’'s a lot slower than running under
nod_perl, as we have to re-create the handler each tine.

ny $handl er = HTM.:: Mason: : CA Handl er - >new(
conp_root =>'/path/to/conp_root’,
data_dir =>'/path/to/data_dir’,

)i

$handl er - >handl e_r equest ;

For this program to work, it still requires a bit of help fronpAche; however it does not require
mod_perl. The following configuration simply instructs Aybe to pass all requests fait m files to
ourmason_handl er. cgi program above.

<LocationMatch "\.htnl $">
Action htm -mason /cgi-bin/ mason_handl er. cgi
AddHandl er htm - mason . htni

</ Locat i oniat ch>

Perl Training Australia (http://perltraining.com.au/)

Appendix A. Mason Setup and Administration

Using Mason in stand-alone scripts

Mason can be used independently of a CGI environment, orrasfoalarger CGI application. To

do this, we need to create our ofason Interpreteto execute our components. This is particularly
useful when building a testing framework for our compongagsve can load and execute them
independently of a web-server, and can tightly controlrthigiut and examine their output.

#!/usr/bin/perl -w
use strict;
use HTM.:: Mason;

ny $out put_buffer;

ny $interp = HTM.:: Mason: : | nt er p- >new(
conp_root =>'/path/to/conp_root’,
data_dir => '/path/to/data_dir’,
out _met hod => \ $out put _buffer,

)i
$i nt er p- >exec(" ny/ conponent. htm ", @rgs_to_pass);

Our interpreter takes a number of arguments, but all of themoptional. Each argument is
described below:

comp_root
This specifies our component root, where our Mason compemantbe found. If not specified,
it defaults to the current working directory.

data_dir
This specifies Mason’s data directory, where compiled carepts are cached. If not specified
then caching is disabled, and components will be recompiedy time.

out_method

This specifies where component output should be sent. Ifpeatifed then output will go to
stoauT. If a reference to a scalar is provided then all output willizéten to that scalar. This is
perfect for testing, as the scalar can be examined to ensuect output is being generated.

Conclusion

The most common Mason environment is under Apache. Setugiisfde process with most
site-specific configuration being set in or passed to the Magerpretor. We can control how
requests are handled by writing a wrapper around the irgtepr

Perl Training Australia (http://perltraining.com.au/) 129

Appendix A. Mason Setup and Administration

130 Perl Training Australia (http://perltraining.com.au/)

